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A B S T R A C T   

Intensified interest in indoor thermal environment has led to an extensive body of research aimed at developing 
thermal comfort-prediction models with high accuracy. However, previous studies confined the types of bio- 
signal features due to the limited measuring devices available. Wearable devices for measuring blood glucose 
(BG) and cortisol (COR) are being developed recently, and the possibility of adding new bio-signal features has 
been raised. Therefore, this study developed an advanced thermal comfort-prediction model considering BG and 
salivary cortisol (sCOR) and compared the predictive performance with conventional models. Experiments were 
conducted to measure the bio-signal features (electrodermal activity, skin temperature, heart rate, blood pres-
sure, BG and sCOR) and psychological measurements of 15 males and 15 females in three conditions: cold, 
neutral, and warm. To this end, an advanced prediction model was proposed through supervised learning al-
gorithms, including distributed random forest, gradient boosting machine and artificial neural network. The 
accuracy of the proposed model was 73.4%, yielding 10% better performance than 63.4% of the conventional 
model. The high feature importance of BG and sCOR demonstrates that these bio-signal features should be 
included in the prediction model for further studies. The proposed model can be applied in future smart building 
systems to provide pleasant thermal comfort zones for occupants in general.   

1. Introduction 

As a result of increased interest in health care and improvement of 
various sensors, various wearable devices are being developed for bio- 
signal measurement. In 2021, the global market size for wearable 
medical devices was recorded at about 21.3 billion USD, and between 
2022 and 2030, a compound annual growth rate of 28.1% is expected 
[1]. Furthermore, increasing awareness of personal health monitoring 
due to the COVID-19 pandemic has promoted the R&D of wearable 
devices. As a result, devices not only for sports and fitness, but medical 
wearable devices that could be used for long-term treatment of patients 
at home have been developed. For example, people can easily monitor 
their skin temperature, oxygen saturation, respiratory rate, and heart 
rate variability by wearing smart wristbands or smart watches from 
companies like Fitbit, Apple, etc [2,3]. New wearable devices enabled 
active research on bio-signal measurement and its applications. Among 
them, research on the relation between bio-signal and thermal comfort is 
being actively conducted. Interest in thermal comfort is also intensified 
as an extensive body of research regarding the impact of thermal envi-
ronment on work productivity and health has been carried out [4–6]. 

Various bio-signal features were suggested to predict thermal comfort, 
and the relation between bio-signal and thermal comfort was pointed 
out. In line with the increasing importance of thermal comfort, a 
considerable amount of research on the thermal comfort-prediction 
model has been conducted. Wu et al. improved the general accuracies 
of classification tree model C5.0, initially about 30% by 15.5% [7]. The 
bio-signal features used in this study to estimate thermal comfort were 
skin temperature, blood pressure, and heart rate. Burzo et al. developed 
an automatic human comfort prediction model using multimodal sen-
sors to collect bio-signal features including heart rate, skin temperature, 
respiration rate, and electrodermal activity and achieved the highest 
overall accuracy of 74.4% [8]. Li et al. measured skin temperature using 
infrared thermography to predict thermal comfort with an average ac-
curacy of 85% [9]. Liu et al. developed an individual thermal 
comfort-prediction model by collecting bio-signals such as skin tem-
perature and heart rate, and the mean accuracy of their model was 75% 
[10]. Choi and Yeom proposed the data-driven thermal 
comfort-prediction model with local body skin temperature and heart 
rate data collection [11]. As shown in the aforementioned studies, 
various attempts have been made to increase the predictive accuracy of 
the thermal comfort-prediction model. But the bio-signal features in 
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most studies that proposed a prediction model were limited to electro-
dermal activity, skin temperature, blood pressure and heart rate. This is 
related to the level of the development of wearable device technology 
that could be applicable to research. In other words, the above bio-signal 
features can be measured relatively easily by existing wearable devices. 
As such, it can be surmised that existing studies have focused on 
developing a thermal comfort-prediction model based on limited 
bio-signal features. 

Recently, a continuous glucose monitoring system has been devel-
oped and distributed to substitute for the self-blood glucose monitoring 
system based on the traditional blood-gathering method. People with 
diabetes have to monitor their blood glucose at least three to four times 
daily with a fingerstick, which is the conventional method [12]. On the 
other hand, continuous glucose monitoring system is a tiny and flat 
sensor with a needle and can be attached to the skin. The needle in 
continuous glucose monitoring system measures the blood glucose level 
by contacting the interstitial fluid in real-time, and when a smartphone 
makes contact with the sensor, the blood glucose level can be displayed 
on the screen [13]. At the same time, portable and wearable device that 
could measure cortisol, also known as the stress hormone, was being 
developed [14]. Cortisol can be measured using a patch on the skin or 
contact lens, and further techniques are being developed for market 
entry [15]. The development of these technologies suggests two points. 
First, with the help of these technologies, blood glucose and cortisol can 
be easily measured as the other bio-signal features suggested by previous 
studies. Thus, adding these two bio-signal features can pave the way for 
an advanced thermal comfort-prediction model, that is, blood glucose 
and cortisol are likely to enhance the predictive performance of model. 
Second, developing wearable and portable devices to measure bio-signal 
features can contribute to smart building systems. For example, these 
devices can collect bio-signal features and transfer the data to the cloud 
to predict occupants’ thermal comfort in the near future. It implies that 
the application of wearable devices to measure blood glucose and 
cortisol can hold strong practical implications. 

A massive number of research play a significant role in clear evi-
dence that thermal comfort is physiologically and psychologically 
related to stress [16–21]. Thus, it can be inferred that the autonomic 
nervous system’s mechanism impacts thermal comfort. Both blood 
glucose and cortisol are related to the mechanism of the autonomic 
nervous system, and there is a possible link between these bio-signal 
features and thermal comfort [22–25]. However, few studies have 
dealt with the direct relationship between blood glucose and cortisol 
and thermal comfort from a short-term perspective. The accuracy of an 
advanced thermal comfort prediction model that includes blood glucose 
and cortisol can be improved compared to the conventional models that 

mainly used electrodermal activity, skin temperature, blood pressure, 
and heart rate. Therefore, this study aims to propose an advanced 
thermal comfort-prediction model that considers blood glucose and 
cortisol and to compare the proposed model to the conventional one. To 
develop the model, bio-signal features including blood glucose and 
cortisol of 30 subjects in three different thermal environments were 
measured. After data collection, some of the features were preprocessed 
and three supervised learning algorithms namely, distributed random 
forest, gradient boosting machine, and artificial neural network, were 
used to develop the prediction model. 

2. Materials and methods 

2.1. Subjects 

This experiment obtained permission from the institutional review 
board who reviewed the safety and ethics of the experiment, and the 
approved experiment was conducted based on the specified detailed 
procedures (IRB no. 7001988-202203-HR-1508-02). Table 1 shows the 
subjects’ demographic statements. A total of 30 subjects participated in 
the experiment. Since the function of the endocrine system tends to 
deteriorate by age, the experiment recruited relatively healthy subjects 
in their 20s and 30s [26]. The age of the female and male subjects was 
27.3 ± 3.7 and 29.3 ± 2.4, respectively; the body mass index (BMI) was 
20.49 ± 1.87 kg/m2 and 24.86 ± 2.81 kg/m2, respectively. None of the 
subjects were obese or have low body weight based on the BMI classi-
fication with a normal weight range of 18.5–24.9 kg/m2 [27]. Before the 
recruitment, the research team ran a questionnaire to verify that the 

Nomenclature 

ST Skin temperature 
HRV Heart rate variability 
BP Blood pressure 
HR Heart rate 
EDA Electrodermal activity 
CGMS Continuous glucose monitoring system 
SBGM Self-blood glucose monitoring 
BG Blood glucose 
COR Cortisol 
DRF Distributed random forest 
GBM Gradient boosting machine 
ANN Artificial neural network 
BMI Body mass index 
SBP Systolic blood pressure 
DBP Diastolic blood pressure 

sCOR Salivary cortisol 
PP Pulse pressure 
TSV Thermal sensation vote 
TPa Thermal preference 
STAI State trait anxiety inventory 
RRI Mean RR interval 
RMSSD Root mean square of the successive difference 
LF Lower frequency 
HF High frequency 
AUROC Area of under the receiver operating characteristic curve 
AUPRC Area of under precision-recall curve 
TPb True positive 
TN True negative 
FP False positive 
FN False negative 
TPR True positive rate 
TNR True negative rate  

Table 1 
Demographic statements.  

Criteria Females (n = 15) Males (n = 15) 

Mean ± SD Mean ± SD 

Age (year) 27.3 ± 3.7 29.3 ± 2.4 
BMIa (kg/m2) 20.5 ± 1.9 24.9 ± 2.8 
Fasting retention time (hour) 14.9 ± 2.1 13.1 ± 2.7 
Fasting BGb level (mg/dL) 90.2 ± 8.5 94.7 ± 8.6 
SBPc (mmHg) 110.8 ± 8.5 124.8 ± 7.8 
DBPd (mmHg) 77.3 ± 10.0 80.3 ± 9.2 
Average sleep time (hour) 7.4 ± 1.3 7.1 ± 1.1 

Note. 
a BMI stands for the body mass index. 
b BG for blood glucose. 
c SBP for systolic blood pressure. 
d DBP for diastolic blood pressure. 
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subjects did not have any history of chronic diseases (e.g., diabetes, 
anemia, hypertension and arrhythmia etc.) related to the autonomic 
nervous system. In addition, the research team removed external factors 
that would have a negative effect on the measurement of blood glucose 
(BG) and cortisol (COR) and set the following exclusion criteria to verify 
the subjects’ normal condition:  

• The subjects should not eat anything 8h before the experiment, and 
their fasting BG level should be between 70 and 100 mg/dL.  

• The subjects’ systolic blood pressure (SBP) and diastolic blood 
pressure (DBP) should be below 139 and 89 mmHg, respectively. 

• The subjects should have more than 8h of sleep before the experi-
ment, and should refrain from drinking alcohol, smoking or taking 
drugs 2h before the experiment. 

Before the experiment, the research team verified the subjects’ BG 
and BP values and verified the exclusion criteria through the question-
naire. None of the subjects violated the exclusion criteria, and they were 
all in the normal state, which made it possible for them to participate in 
the experiment (refer to Table 1). 

2.2. Data collection 

2.2.1. Environmental factors 
This experiment was conducted in an artificial climate chamber 

(W×D×H: 2.8×3.9×2.4m3). In the climate chamber, the air tempera-
ture can be controlled between 10 and 80◦C, and the relative humidity 
between 10 and 80%. Through the mechanical ventilation system, the 
air inside can be exchanged with the air outside. Consequently, the 
experiment could be repeated under an identical thermal environment. 
Furthermore, the climate chamber was designed to be a typical office 
space with a desk and chairs. To accurately confirm the air temperature 
and relative humidity inside the climate chamber, sensors that can 
comprehensively monitor the indoor air quality surrounding the sub-
jects were installed. The bio-signal data measured by the sensors could 
be verified in real-time using a computer and a smartphone via the 
dashboard. 

2.2.2. Bio-signals 
In this study, the subjects’ bio-signal features based on the thermal 

environment were measured. Aside from the bio-signals that had been 
measured in related works, this study collected six bio-signal features: (i) 
electrodermal activity (EDA), (ii) skin temperature (ST), (iii) heart rate 
(HR), (iv) BP, (v) BG, and (vi) salivary COR (sCOR).  

• Electrodermal activity (EDA): EDA is a bio-signal feature showing 
the change in skin’s electroconductivity due to the sudoriferous ac-
tion. It is measured by applying a very low voltage on the surface of 
the skin. This study collected the subjects’ EDA data using a wrist-
band (E4 Wristband, Empatica Inc, USA) [28]. EDA generally in-
creases because sweat or other moisture is secreted when humans are 
under stress due to sympathetic nerve activation. According to 
Osmalina et al., the EDA can allow for classifying the stress level with 
over 94% of accuracy [29]. Thus, the EDA can be a biomarker that 
can be used to define the stress level.  

• Skin temperature (ST): To examine the change in ST based on the 
thermal environment, this study measured the subjects’ ST with the 
E4 Wristband. ST is regulated by thermoregulation systems with 
negative and positive feedback to maintain homeostasis [30]. In 
addition, provoked emotions and induced muscular tension under 
stress can affect ST.  

• Heart rate (HR): The photoplethysmography sensor inside E4 
Wristband measures the blood volume pulse and calculates HR based 
on the included algorithm [31]. HR refers to heart beats per minute, 
and it generally tends to increase under stress. The pulse rate tends to 
increase under stress compared to the state of being at rest [32]. In 

addition, according to Wu et al., HR tends to drop in a cold envi-
ronment [33]. 

• Blood pressure (BP): BP was measured with an automatic sphyg-
momanometer (HEM-7600T, Omron, Japan). In particular, SBP, 
DBP, and Pulse Pressure (PP, difference between SBP and DBP) were 
measured. When the heart contracts and pushes the blood to the 
coronary vessels, the BP reaches its maximum, and the BP at this 
point is called SBP, and when the heart is relaxed, it is called DBP. 
According to previous studies, BP tends to increase when the human 
body is under stress [34,35]. In addition, the BP of the body tends to 
increase further under a cold environment [36].  

• Blood glucose (BG): BG is the concentration of glucose in the blood 
and is controlled by glucagon, adrenaline and insulin among others. 
Before the experiment, the subjects’ BG level was measured via self- 
blood glucose monitoring (SBGM), a traditional measurement 
method for the BG level. SBGM is conducted by taking blood from the 
tip of a finger using a laser lancing device (LMT-1000, LaMeditech, 
South Korea) and measuring the BG level with a glucose monitor (Dr. 
Diary, Dr. Diary Plus, South Korea). A laser lancing device alleviates 
stress and pain on the subject’s part unlike traditional lancing de-
vices. But since the blood collection act itself can cause stress for the 
subjects, the experiment measured the BG level using a non-invasive 
method called continuous glucose monitoring system (CGMS). This 
study used CGMS (FreeStyle Libre 2, Abbott, USA) and collected the 
BG data with FreeStyle Libre app offered by Abbot.  

• Salivary cortisol (sCOR): COR, a hormone produced by adrenal 
glands, is shown to be related to the stress level and has often been 
used as a biomarker for stress [38]. While COR can be collected from 
blood, urine, saliva or other body fluids, this study used a saliva fluid 
collection method that could minimize the subjects’ stress. In case of 
sCOR, collection is easy, but its reliability can be poor depending on 
the mouth’s condition. Consequently, this study collected the sub-
jects’ saliva using the Salivette kit from Starstedt for accurate sCOR 
collection [39]. The collected saliva was stored under a refrigerant 
environment at − 20 ◦C and the refined data were extracted via a 
professional laboratory. 

2.2.3. Psychological measurements 
To measure the subjects’ thermal comfort and level of anxiety based 

on the thermal environment, the study conducted surveys based on the 
three measurements: (i) thermal sensation vote (TSV), (ii) thermal 
preference (TP), and (iii) state trait anxiety inventory (STAI).  

• Thermal sensation vote (TSV): Thermal sensation is the degree in 
which the subjects feel the surrounding thermal environment (refer 
to Table A1). TSV has often been used in tests that analyzed partic-
ipants’ subjective thermal sensation and can evaluate the subjects’ 
thermal sensation on a 7-point Likert scale from − 3 (Cold) to +3 
(Hot) [40,41].  

• Thermal preference (TP): TP is a subjective criterion on whether 
subjects prefer the current thermal sensation (refer to Table A2) [42]. 
This study conducted a survey using a 2-point Likert scale between “1 
(Preference)” and “0 (No preference)” to determine the subjects’ 
preference on the thermal environment.  

• State trait anxiety inventory (STAI): STAI consists of state and trait 
anxiety, which refer to the anxiety that the subject feels temporarily 
and experiences daily [43]. State anxiety and trait anxiety are 
measured using 20 questions each where each question is evaluated 
using four criteria divided by frequency and degree (refer to Table A3 
and A4). This study allocated 1 to 4 points to each criterion and 
summed all points to analyze state anxiety and trait anxiety, 
respectively. It then analyzed how much the subjects felt anxious 
under the measurement of state anxiety compared to the normal 
state by determining the difference between state anxiety and trait 
anxiety. This study offered questionnaires translated into Korean so 
that the subjects do not mistranslate each question on the STAI. 
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2.3. Experimental procedure 

Before the experiment, the subjects were given a detailed explana-
tion about the equipment they would wear and the experimental pro-
cedures. Next, the research team verified whether the subjects 
corresponded to the set exclusion criteria and acquired the subjects’ 
agreement to the experiment by receiving their signature on the form. 
Attached on one arm of the subjects was the CGMS for the measurement 
of BG and on the other arm was the automatic sphygmomanometer and 
E4 wristband. After the attachment of CGMS, the subjects waited for 
about 1 h until compensation of BG value is completed. At the same 
time, the subjects completed STAI-X-2, which evaluated their trait 
anxiety. Fig. 1 shows the experimental procedure. The experiment lasted 
for a total of 80 min, including three phases that took 20 min each. After 
completion of each phase, the subjects rested for 10 min outside the 
climate chamber. Since there is no standard for determining appropriate 
test time, exposure and rest time were determined by referring to pre-
vious research with a similar experimental procedure. The thermal 
environment in Phase 1, 2 and 3 was set at 0, -3, and +3, respectively, 
according to the predicted mean vote (PMV). Specifically, Phase 1 was 
set to the neutral condition where PMV was 0 (i.e., 25 ◦C for temperature 
and 50% for humidity), Phase 2 was set as the cold condition where PMV 
was − 3 (i.e., 16 ◦C for temperature and 30% for humidity), and Phase 3 
was the warm condition where PMV was +3 (i.e., 33 ◦C for temperature 
and 80% for humidity). When the experiment began, the research team 
monitored EDA, ST, and HR by running the E4 wristband on the subjects. 
On the other hand, BG, BP and sCOR measurement was done directly by 
the research team. 5, 10, and 15 min after the beginning of the experi-
ment, the research team measured BG and BP, and after 10 min, sCOR 
was measured additionally. At the same time, the subjects responded to 
the survey on TSV and TP after 5, 10, and 15 min of the experiment, and 
responded to STAI-X-1 upon completion of each phase. 

2.4. Machine learning based thermal comfort-prediction model 

As shown in Fig. 2, the collected raw bio-signal features were used in 
data preparation, training, and evaluation in sequence to develop a 
thermal comfort-prediction model. Ultimately, the study evaluated and 
compared the prediction performance of the conventional model and the 
proposed model. The two prediction models were both defined as a bi-
nary classification model with TP as its target variable. The prediction 
variables of the conventional model consisted of the indexes related to 
EDA, ST, HR and BP, while those of the proposed model consisted of the 
indexes related to EDA, ST, HR, BP, BG and sCOR. 

2.4.1. Data preparation 
The raw bio-signal features were refined so that they become suitable 

for training the machine learning algorithm. Toward this end, the study 
performed signal processing on the continuous measurement values of 
EDA and HR. Using Ledalab, MATLAB-based signal analysis software, 

the study preprocessed and analyzed the raw EDA signal [44]. After the 
preprocessing including down-sampling, low-pass filtering and 
smoothing, the signal was decomposed into tonic and phasic compo-
nents via continuous decomposition analysis. Since the experiment aims 
to measure the continuous and long-term bio-signal features that change 
depending on the thermal environment, the study extracted the tonic 
components. Kubios heart rate variability (HRV) software was also used 
to preprocess and analyze the raw HR signal [45]. Previous studies show 
that the HR signal is generally converted into HRV and used as various 
application indexes. HRV is divided into the time domain indicator 
based on the time interval between nearby QRS complexes and the 
frequency domain indicator based on the signal’s waveform. This study 
used the following HRV related indicators as predicator variables based 
on versatility: (i) Mean HR, (ii) Mean RR interval (RRI), (iii) Root mean 
square of the successive differences (RMSSD), and (iv) Ratio of lower 
frequency (LF) (0.04–0.15 Hz) to high frequency (HF) (0.15–0.4 Hz) or 
just LF/HF ratio. 

Next, the study processed the outliers included in the bio-signal 
feature dataset. The dataset with outliers can result in a distorted or 
biased performance of the prediction model. An outlier was defined as 
the value exceeding the dataset’s 1.5 x interquartile range (IQR), which 
substituted for the mean value. Additionally, the study performed a log 
transformation to convert the biased distribution of the bio-signal 
feature dataset that showed severe variation among individuals to a 
normal distribution. Furthermore, the study unified the scale among the 
predicator variables through min-max normalization by converting the 
dataset into values between 0 and 1. In summary, there were nine 
predicator variables of the conventional model: ‘EDA’, ‘ST’, ‘mean HR’, 
‘mean RRI’, ‘RMSSD’, ‘LF/HF ratio’, ‘SBP’, ‘DBP’ and ‘PP’, and the target 
variable was set to ‘TP’. On the other hand, the proposed model added to 
the existing nine predictor variables ‘BG’ and ‘sCOR’, and the target 
variable was identical to ‘TP’. 

2.4.2. Machine learning algorithm 
This study used three supervised learning algorithms to produce the 

thermal comfort-prediction model: (i) distributed random forest (DRF), 
(ii) gradient boosting machine (GBM), and (iii) artificial neural network 
(ANN). According to Joseph [46], optimal train and test data splitting 
ratio is ̅̅̅p√ : 1, where p is the number of parameters. The number of 
parameters in DRF, GBM and ANN is 10, 11 and 10, individually. 
Therefore, 70% of the collected bio-signal feature dataset was allocated 
to the training set, and 30% to the test set. Next, via the 5-cross vali-
dation, the hyperparameters of the supervised learning algorithm were 
determined, and the study performed a grid search via several iteration 
processes to extract the optimal predictive performance. For DRF, 
hyperparameters including ‘number of trees’ and ‘maximum depth’ 
were determined from the grid search. For GBM, hyperparameters such 
as ‘number of trees’, ‘maximum depth’, ‘sample rate’, ‘minimum rows’ 
were determined from the grid search. For ANN, hyperparameters 
including ‘number of hidden layers’, ‘number of neurons’, ‘learning 

Fig. 1. Experimental procedure.  
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rates’, and ‘epoch’ were determined from the grid search. 

2.4.3. Performance assessment 
In the machine learning algorithms where the hyperparameters are 

set by 5-cross validation, the test set evaluates the predictive perfor-

mance. The predictive performance was evaluated based on Accuracy, 
Area under the receiver operating characteristic curve (AUROC) and 
Area under the precision-recall curve (AUPRC). The aforementioned 
indexes are produced by the following four parameters that originated 
from the confusion matrix: (i) true positive (TP), (ii) true negative (TN), 

Fig. 2. The flowchart of developing thermal comfort-prediction model.  
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(iii) false positive (FP), and (iv) false negative (FN). TP refers to the 
number of cases correctly identified as thermal comfort; FP is the 
number of cases incorrectly identified as thermal comfort; TN is the 
number of cases correctly identified as thermal discomfort; FN is the 
number of cases incorrectly identified as thermal discomfort. The ROC 
curve signifies the relation between the true positive rate (TPR) or recall 
and the true negative rate (TNR), while the area below the curve is 
defined as AUROC. The precision-recall curve signifies the relation be-
tween TPR or recall and precision and the area below the curve is 
defined as AUPRC. TPR, TNR, precision, and accuracy can be expressed 
in Eqs. (1)–(4), respectively. AUROC and AUPRC are often used to 
evaluate the predictive performance of the dataset with class imbalance. 
Realistically, the rate in which the target variable TP is 0 (No preference) 
is higher than 1 (Preference), the study selected AUROC and AUPRC as 
the indicators for evaluating the predictive performance due to the 
characteristic of the model, that is, it should more accurately predict the 
resident’s thermal discomfort. 

TPR or Recall=
TP

TP + FN
× 100% (1)  

TNR=
TN

TN + FP
× 100% (2)  

Precision=
TP

TP + FP
× 100% (3)  

Accuracy=
TP + TN

TP + TN + FP + FN
× 100% (4)  

where, TPR stands for true positive rate; TP for true positive; FN for false 
negative; TNR for true negative rate; TN for true negative; and FP for 
false positive. 

Finally, the study calculated the feature performance to analyze 
which bio-signal features among the 11 predictor variables showed the 
highest predictive performance. DRF, GBM and ANN algorithms are all 
black box models, so it is difficult to determine the importance using a 
statistical method. Consequently, the study defined the feature impor-
tance by conducting data permutation based on random shuffling. 

3. Results 

3.1. Exploratory data analysis 

3.1.1. Outcomes of thermal environment 
Table 2 shows the mean value and standard deviation of initial 

designed and measured environmental condition by the monitoring 
sensor. For phases 1 and 2, PMV is − 0.14 and − 2.94, respectively, which 
is close to the PMV value set initially. For phase 3, PMV is 2.69, which 
initially has an error of 0.31 from PMV set. In other words, the subjects 
participated in the experiment in a relatively hot environment in Phase 
3. This is because, as the subjects stay in the climate chamber for a long 

time, the CO2 concentration increased, which made the mechanical 
ventilation system run to supply outdoor air to the chamber. 

Fig. 3(A) shows the stacked bar chart of the subjects’ response for 
TSV. For phase 1, 66.7% of subjects perceived the thermal environment 
as neutral condition; 20% of subjects felt warm; 13.3% of subjects felt 
cool. For phase 2, 87.2% of subjects perceived the thermal environment 
as cool condition; 12.8% of subjects felt neutral. For phase 3, 92.1% of 
subjects perceived the thermal environment as warm condition. Fig. 3 
(B) shows bar chart of the subjects’ response for TP. For phase 1, 84.5% 
of the subjects responded that the thermal environment was ‘Prefer-
ence’. Conversely, for phases 2 and 3, 65.4 and 76.2% of subjects 
responded that the thermal environment was ‘No preference’. 

Table 3 shows the subjects’ response for STAI. Trait anxiety was 37.6 
± 7.9, so most subjects were shown to have naturally low emotional 
anxiety. For the quantitative evaluation of stress caused by the thermal 
environment, the study should verify the score where the trait anxiety 
was removed from the state anxiety. The study evaluated the subjects’ 
stress in each phase by calculating the rate of change (%) between the 
trait anxiety and the state anxiety. For phase 1, the rate of change was 
− 4.95%, showing that the subjects did not feel anxiety and felt calmer 
than normal. On the other hand, the rate of change in Phase 2 and Phase 
3 was 1% and 4.85%, respectively, showing that the subjects felt more 
anxious than normal. In particular, since the rate of change in phase 3 
was higher than in phase 2, it showed that the subjects felt more anxious 
when it is warm compared to when it is cold. 

3.1.2. Outcomes of bio-signal features 
The box plot of the collected data is shown in Fig. 4. The EDA of the 

subjects by thermal environment in Phase 1, 2 and 3 was 0.35 ± 0.19, 
0.40 ± 0.21 and 0.44 ± 0.17 μS, respectively. As the value based on the 
level of sweat secretion, EDA has a relatively high variation among in-
dividuals, resulting in high standard deviation. When verified with the 
mean value, EDA posted a marked increase in Phase 3 than in Phase 1, 
which was attributed to sweat secretion caused by temperature increase 
and stress. By phase, ST was 32.2 ± 1.3, 31.3 ± 1.3 and 31.5 ± 2.0 ◦C, 
respectively. It showed the highest value in Phase 1, and in Phase 2 and 
Phase 3, it fell by a bit. HR in Phase 1, 2 and 3 was 72.3 ± 4.6, 65.7 ± 6.4 
and 73.9 ± 8.0 beats/min, respectively, showing that the value tended 
to drop as the subjects felt cold. In particular, when compared to Phase 
1, it was more marked in Phase 2, which was a cold environment, than in 
Phase 3, which was a warm environment. BP is divided into SBP and 
DBP, and in Phase 1, they were 112.8 ± 9.0 and 76.6 ± 9.0 mmHg, 
respectively. In addition, in Phase 2 they were 119.3 ± 11.8 and 82.6 ±
9.6 mmHg, respectively. Finally in Phase 3, they were 113.1 ± 9.7 and 
75.8 ± 7.8 mmHg, respectively. Generally, BP tended to drop when the 
subjects felt warm, and the difference was more marked in cold envi-
ronment than in warm condition compared to the neutral condition. BG 
was measured to be 77.3 ± 13.3, 71.1 ± 12.1 and 65.0 ± 14.0 mg/dL 
per phase. Such a result is intensified through the drop in the thermal 
comfort leading to the drop in BG. sCOR in Phase 1, 2 and 3 was 0.1 ±
0.04, 0.14 ± 0.1 and 0.11 ± 0.06 μg/ml, respectively. Compared to 
sCOR in Phase 1 was measured to be higher, regardless of temperature, 
which shows that the drop in thermal comfort increased sCOR. 

3.2. Performance assessment of thermal comfort-prediction model 

The study evaluated the predictive performances (i.e., accuracy, 
AUROC and AUPRC) of the thermal comfort-prediction model devel-
oped by three machine learning algorithms (i.e., DRF, GBM and ANN). 
First, compared to the conventional model, the study evaluated the 
performance of the proposed model that included BG and sCOR. Addi-
tionally, the collected bio-signal feature dataset was divided by (i) 
gender and (ii) thermal state and were used to evaluate the predictive 
performance of each model. 

Table 2 
Mean value and standard deviation of designed and measured conditions.  

Designed 
conditions 

Measured conditions 

PMVa PMV Temperature 
(◦C) 

Humidity 
(%) 

CO2 (ppm) 

0 (Phase 1) − 0.14 25.4 ± 0.1 36.3 ± 8.3 655.6 ±
161.2 

− 3 (Phase 2) − 2.94 15.9 ± 2.0 41.6 ± 5.7 821.1 ±
204.8 

3 (Phase 3) 2.69 32.7 ± 2.0 59.5 ± 19.5 926.1 ±
233.8 

Note. 
a PMV stands for predicted mean vote. 
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3.2.1. Assessment of proposed model compared to conventional model 
Table 4 shows the predictive performance of one conventional model 

and three proposed models. Performance assessment was performed 
after segregation following four cases: (i) conventional model including 
nine variables (C), (ii) proposed model with BG (C + BG), (iii) proposed 
model with sCOR (C + sCOR), and (iv) proposed model with BG and 
sCOR (C + BG + sCOR). For the conventional model, GBM was the al-
gorithm that showed the highest predictive performances (accuracy: 

63.4%, AUROC: 67.5%, AUPRC: 66.7%). For ‘C + BG’, the accuracy of 
ANN and AUROC was shown to be superior at 69.6 and 71.9%, 
respectively, and AUPRC of GBM was shown to be highest at 69.5%. For 
‘C + sCOR’, ANN showed the highest predictive performances (accu-
racy: 69.6%, AUROC: 76.7%, AUPRC: 75.5%). For ‘C + BG + sCOR’, 
ANN showed the highest predictive performances (accuracy: 73.4%, 
AUROC: 77.5%, AUPRC: 78.2%). 

Compared to the conventional model, the accuracy, AUROC and 
AUPRC increased on the average by 3.3, 5.3 and 4%, respectively when 
BG was added, by 4.3, 8.0 and 8.2% on the average when sCOR was 
added, and by 9.5, 10.9 and 11.2% on the average when both BG and 
sCOR were added. sCOR increased the predictive performance of the 
prediction model more than BG did, and when the two new bio-signal 
features were all added to the prediction model, its predictive perfor-
mance increased at its highest. 

Fig. 5 shows feature importance of proposed model including BG and 

Fig. 3. Bar chart of the subjects’ response for TSV and TP.  

Table 3 
Mean value and standard deviation of subjects’ response for STAI.  

Phase Trait anxiety State anxiety Rate of change (%) 

Phase 1 37.6 ± 7.9 35.0 ± 7.5 − 4.95 
Phase 2 37.8 ± 8.6 1 
Phase 3 38.1 ± 6.7 4.85  

Fig. 4. Box plot of six bio-signal features.  
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sCOR. In sum, RMSSD’s feature importance was highest at 12.4%, fol-
lowed by BG and sCOR at 11.8 and 10.5%, respectively. RMSSD in-
dicates the activity of the parasympathetic nerve to the heart. In other 
words, this index related to stress level of autonomous nerve system. 
Such results demonstrate that compared to other bio-signal features that 
were often used in existing studies, BG and sCOR play a more significant 
impact on the predictive performance of the thermal comfort-prediction 
model. 

3.2.2. Assessment in the gender perspective 
The hypothesis that the thermal comfort zone is set differently by 

gender characteristic is supported by a considerable number of literature 
and is being proved by active research [47–51]. To examine the gender 
difference in the psychological and physiological response, the study 
classified 15 females and 15 males into two groups and developed a 
thermal comfort-prediction model and evaluated its predictive perfor-
mance. Moreover, when BG and sCOR were added to the predictive 
variables of the prediction model, the study identified the changes in the 
predictive performance of the model. 

The bio-signal dataset of the female group was 135 in total, where 71 
responded that TP was “1 (Preference)” while 64 responded it to be “0 
(No preference)”. As shown in Table 5, the study compared the predic-
tive performance of the conventional and proposed models for the fe-
male group. For the conventional model, ANN was shown to be the 

algorithm with the highest predictive performances (accuracy: 77.0%, 
AUROC: 76.7%, AUPRC: 75.5%). For the proposed model, similarly, 
ANN was shown to offer the highest predictive performances (accuracy: 
69.2%, AUROC: 72.4%, AUPRC: 80.5%). However, when BG and sCOR 
were aided to the prediction model for the female group, the average 
predictive performance was rather shown to have dropped. As a result, 
compared to the conventional model, the proposed model showed a 
drop in accuracy and AUROC by about 12.4 and 2.9%, respectively. On 
the other hand, AUPRC increased by about 13.5%, showing that preci-
sion changed more sensitively than recall. 

The bio-signal dataset of the male group was 123 in total, where 55 
responded that TP was “1 (Preference)” while 68 responded it to be “0 
(No preference)”. As shown in Table 5, the study compared the con-
ventional and proposed models’ predictive performance for the male 
group. For the conventional model, ANN was shown to be the algorithm 
with the highest predictive performances (accuracy: 80.4%, AUROC: 
84.8%, AUPRC: 85.7%). For the proposed model, similarly, ANN was 
shown to offer the highest predictive performances (accuracy: 86.2%, 
AUROC: 88.5%, AUPRC: 90.0%). Generally, the prediction model of the 
male group was much superior to that of the female group. Additionally, 
when BG and sCOR were added to the prediction model of the male 
group, the predictive performance soared. As a result, compared to the 
conventional model, the proposed model’s accuracy, AUROC and 
AUPRC increased by about 7.0, 4.7 and 6.0%, respectively. 

Fig. 6 shows feature importance of the prediction model in each 
gender group. Since the prediction model of the two gender groups 
showed the highest performance with ANN, the study calculated feature 
importance based on the data permutation using random shuffling. The 
analysis showed that sCOR was the most significant bio-signal feature in 
both gender groups. Particularly, in the female group, the feature 
importance of sCOR was 19.2%, twice higher than the other features. 
Furthermore, BG was the third most important feature in the female 
group, and the second more important feature in the male group. As a 
result, both sCOR and BG were relatively more important in the two 
gender groups than other bio-signal features. 

Gender difference in thermal comfort zone has been actively 
researched, and various research outcomes have been produced. 
Indraganti et al. reported that females felt non-neutral sensations and 
thermal discomfort more than males do [52]. Liu et al. investigated that 
females were more sensitive to the surrounding thermal environment 

Table 4 
Comparison of predictive performance between conventional and proposed models.  

Algorithms Performance Conventional model (9 variables) Proposed Models 

Cg + BGh (10 variables) C + sCORi (10 variables) C + BG + sCOR (11 variables) 

DRFa ACCd (%) 56.1 59.9 60.8 67.0 
AUROCe (%) 57.3 64.2 65.4 70.1 
AUPRCf (%) 56.6 58.5 65.9 67.1 

GBMb ACC (%) 63.4 63.5 65.9 68.4 
AUROC (%) 67.5 68.0 69.4 72.6 
AUPRC (%) 66.7 69.5 67.6 72.9 

ANNc ACC (%) 60.8 69.6 69.6 73.4 
AUROC (%) 62.8 71.3 76.7 77.5 
AUPRC (%) 61.2 68.4 75.5 78.2 

AVRAGE ACC (%) 60.1 64.3 65.4 69.6 
AUROC (%) 62.5 67.8 70.5 73.4 
AUPRC (%) 61.5 65.5 69.7 72.7 

Note. 
a DRF stands for the distributed random forest. 
b GBM for the gradient boosting machine. 
c ANN for the artificial neural network. 
d ACC for accuracy. 
e AUROC for area of under the receiver operating characteristic curve. 
f AUPRC for area of under the precision-recall curve. 
g C for the conventional model. 
h BG for blood glucose. 
i sCOR for salivary cortisol. 

Fig. 5. Feature importance of prediction model considering BG and sCOR.  
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than males due to the skin temperature of particular parts [53]. Xiong 
et al. concluded that male occupants have stronger thermoregulation 
ability than female occupants [54]. The results from the aforementioned 
literature stress that the thermal comfort zone differs by male and fe-
male subjects, and that there also is difference in the innate thermo-
regulation ability. Thus, it is necessary to consider gender characteristics 
when developing a thermal comfort-prediction model in the future. Choi 
and Yeom developed a prediction model by identifying gender as the 
predictor variable, verifying that the predictive accuracy increased from 
83.37% to 88.52% [55]. Likewise, Chaudhuri et al. considered gender 
and confirmed that the predictive accuracy increased from 82.32% to 
97.15% [56]. This result showed that gender characteristics signifi-
cantly influenced the prediction model’s performance among the human 
factors. Furthermore, there is clear scientific evidence that the variation 
of BG and the amount of COR secretion are affected by gender difference 
[57–59], and the proposed thermal comfort-prediction model showed a 
completely opposite result in sCOR and BG between the two-gender 
group. In summary, if all bio-signal features and thermal comfort zone 
by gender are considered, the prediction model could produce higher 
predictive accuracy in the future. 

3.2.3. Assessment in the thermal state perspective 
The thermal comfort and satisfaction felt by occupants yield different 

trends by the indoor thermal state (i.e., neutral, cold and warm condi-
tion). Many researchers have attempted to verify such a hypothesis by 
conducting various experiments. Various research outcomes resulted, 

showing that thermal comfort zones differ according to the weather and 
climate conditions where people live in. Toward this end, the study 
divided the dataset collected in Phases 1 and 2 and the dataset collected 
in Phases 1 and 3 by cold and hot condition, respectively, to develop a 
thermal comfort-prediction model and evaluated its predictive perfor-
mance. Moreover, the study confirmed the changes in the predictive 
performance of the prediction model when BG and sCOR were added to 
its predictor variables. 

The bio-signal dataset in cold condition were 165 in total, and those 
responding to TP as “1 (Preference)” were 103, and those to “0 (No 
preference)” were 65. As shown in Table 6, the study compared the 
conventional and proposed models’ predictive performance in cold 
conditions. For the conventional model, ANN was shown to have the 
highest predictive performances (accuracy: 70.1%, AUROC: 77.4%, 
AUPRC: 85.6%). For the proposed model, similarly, ANN was the al-
gorithm with the highest predictive performances (accuracy: 83.0%, 
AUROC: 83.3%, AUPRC: 83.5%). When BG and sCOR were added to the 
prediction model in cold conditions, its predictive performance 
increased. As a result, compared to the conventional model, the pro-
posed model showed an increase in accuracy, AUROC and AUPRC by 
about 7.5, 4.9 and 0.9%, respectively. 

The bio-signal dataset in warm condition were 180 in total, and those 
responding to TP as “1 (Preference)” were 99, and those to “0 (No 
preference)” were 81. As shown in Table 6, the study compared the 
conventional and proposed models’ predictive performance in cold 
conditions. For the conventional model, DRF was shown to have the 
highest predictive performances (accuracy: 74.1%, AUROC: 78.3%, 
AUPRC: 71.8%). For the proposed model, similarly, DRF was the algo-
rithm with the highest predictive performances (accuracy: 86.2%, 
AUROC: 88.5%, AUPRC: 90.0%). Additionally, when BG and sCOR were 
added to the prediction model in warm condition, its predictive per-
formance was shown to increase significantly. As a result, compared to 
the conventional model, the proposed model showed an increase in 
accuracy, AUROC and AUPRC by about 12.4, 8.1 and 12.4% respec-
tively. Generally, the prediction model in warm condition was shown to 
have slightly better predictive performance than in cold condition, and 
the degree of the increase in the predictive performance when BG and 
sCOR were added to the predictor variables was higher in warm 
condition. 

Fig. 7 shows the feature importance (%) of prediction model in two 
thermal states. In cold condition, it was determined by data permutation 
using random shuffling, and in warm condition, it was by the mean 
decrease of Gini index. In the cold condition, BG (11.3%) was shown to 

Table 5 
Comparison of predictive performance in perspective to gender differences.  

Algorithms Performance Females (n = 15) Males (n = 15) 

Conventional model (9 variables) Proposed Model (11 variables) Conventional model (9 variables) Proposed Model (11 variables) 

DRFa ACCd (%) 63.6 50.0 73.1 83.3 
AUROCe (%) 59.3 57.6 76.3 82.2 
AUPRCf (%) 53.3 71.0 75.6 82.5 

GBMb ACC (%) 71.6 55.8 78.0 83.0 
AUROC (%) 67.7 63.7 83.6 88.2 
AUPRC (%) 61.6 76.6 82.8 89.6 

ANNc ACC (%) 77.0 69.2 80.4 86.2 
AUROC (%) 75.4 72.4 84.8 88.5 
AUPRC (%) 72.6 80.5 85.7 90.0 

AVRAGE ACC (%) 70.7 58.3 77.2 84.2 
AUROC (%) 67.5 64.6 81.6 86.3 
AUPRC (%) 62.5 76.0 81.4 87.4 

Note. 
a DRF stands for the distributed random forest. 
b GBM for the gradient boosting machine. 
c ANN for the artificial neural network. 
d ACC for accuracy. 
e AUROC for area of under the receiver operating characteristic curve. 
f AUPRC for area of under the precision-recall curve. 

Fig. 6. Feature importance of prediction model in each gender group.  
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be the most important bio-signal feature, sCOR (9.73%) was the fourth 
most. When it is warm, BG (10.1%) was the third, and sCOR (9.17%) was 
the sixth most important feature. 

Previous literature has analyzed the trends in occupants’ bio-signal 
by thermal state. Xiong et al. investigated that thermal state has 
strong impact on human’s bio-signal (i.e., ST) and psychological 
response (i.e., thermal acceptance) [60]. Hu et al. reported that the 
change in physiological response (i.e., ST, HR, oxygen saturation and 
dopamine) to warm conditions is opposite to cold conditions [61]. As 
opposed to sCOR that changes sensitively by stress level, BG shows a 
different trend by thermal state. Generally, BG increases in cold weather 
as the blood vessels contract. In warm weather, on the contrary, BG 
decreases because the blood thickens, and the blood vessels extends as 
moisture is discharged as sweat. Based on such scientific facts, if the 
occupants’ bio-signal features and thermal acceptance by thermal state 
are considered, it is expected that a prediction model with higher pre-
dictive performance can be developed in the future. 

4. Discussions 

4.1. Practical implications 

While related works confined their prediction models based on 
limited types of bio-signal features, this study suggested adding BG and 
COR to develop advanced thermal comfort-prediction models. This 
study’s findings make several contributions. The results of feature 
importance analysis demonstrated the possibility of using BG and COR 
as the new bio-signal features to develop prediction models in the future. 
Related works have never used BG or COR as predictor variables of a 

prediction model by measuring them with CGMS, so this study is sig-
nificant in terms of academic perspective. As shown in Fig. 8, the pro-
posed model of which average accuracy has improved by 9.5% to the 
conventional model is expected to be used in the smart building systems 
in the near future. In the future smart buildings, occupants’ BG and COR 
as well as many other bio-signal features can be collected in real-time 
from a variety of wearable devices. Wearable devices, as well as wrist-
band, are expected to be developed in the form of smart contact lenses 
and needle patches. The smart contact lens placed on retina in a non- 
invasive way to measure hormone secretion and diabetic [62,63]. 
Additionally, various types of smart patches have been developed to 
continuously measure many bio-signals such as body temperature, heart 
rate etc. [64,65]. The proposed model will be able to estimate the oc-
cupants’ thermal comfort using these bio-signals with high accuracy. 
Consequently, a suitable thermal comfort environment could be offered 
to occupants by operating an air conditioning system based on the 
predicted thermal comfort (refer to Fig. 8). Lastly, this study figured out 
that the importance of each bio-signal differs by gender. Suppose such 
gender difference is applied to the prediction model. In that case, an air 
conditioning system can be operated based on the gender ratio of the 
occupants to offer an optimal thermal comfort zone. Eventually, this will 
lead to enhanced work productivity and health of the occupants in the 
building. 

4.2. Limitations and future directions 

The advanced thermal comfort-prediction model proposed in this 
study can enhance occupants’ thermal comfort in future smart buildings. 
However, there exist several limitations that the proposed model should 
overcome for its application in general conditions. First, the proposed 
model, at this state, has limitations in its practical application due to the 
unique characteristics of BG and sCOR. While the study limited the 
subjects’ condition for an accurate measurement of BG and COR, such as 
forcing them not to eat for 8 h before the experiment or maintaining the 
condition of the mouth, etc., it is almost impossible to satisfy such 
conditions when the proposed model is to be applied to an actual space. 
In other words, BG is most affected by the occupant’s diet, and COR 
varies greatly by the time of measurement and the condition of the 
mouth, so practical application of the proposed model can be limited. 
Second, the wearable and portable device used in this study is limited. 
CGMS measures the glucose in the interstitial fluid, not in blood, so there 
may be some difference to the glucose in the peripheral vascular system. 
Also, ST measured by wearable device is limited in local areas like the 
wrist, not in various other parts of the body, and thus, the measured 
values can be somewhat less versatile. Third, the exposure time was too 

Table 6 
Comparison of predictive performance in perspective to thermal state  

Algorithms Performance Cold condition (PMV=-2.98) Warm condition (PMV=2.76) 

Conventional model (9 variables) Proposed 
Model (11 variables) 

Conventional model (9 variables) Proposed 
Model (11 variables) 

DRFa ACCd (%) 53.4 57.7 65.0 73.1 
AUROC (%) 68.9 75.6 71.9 77.9 
AUPRC (%) 79.0 81.8 65.0 72.7 

GBMb ACC (%) 52.8 58.3 74.1 80.0 
AUROC (%) 71.7 73.9 78.3 80.7 
AUPRC (%) 81.4 80.5 71.8 73.0 

ANNc ACC (%) 70.1 83.0 64.2 76.6 
AUROC (%) 77.4 83.3 68.5 84.3 
AUPRC (%) 85.6 86.5 56.7 85.0 

AVRAGE ACC (%) 58.8 66.3 67.8 76.6 
AUROC (%) 72.7 77.6 72.9 81.0 
AUPRC (%) 82.0 82.9 64.5 76.9 

Note: DRFa stands for the distributed random forest; GBMb for the gradient boosting machine; ANNc for the artificial neural network; ACCd for accuracy; AUROCe for 
area of under the receiver operating characteristic curve; and AUPRC f for area of under the precision-recall curve. 

Fig. 7. Feature importance of prediction model in two thermal states.  
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short, so it was difficult for the subjects to fully acclimatize to the 
experimental conditions. Likewise, the rest time was short, so the sub-
ject’s bio-signals did not return to a steady state quickly. To overcome 
the limitations and improve the prediction model further, future 
research needs to pay attention to the following directions. For gener-
alization of the proposed model, the subjects’ diet and the time of data 
measurement should be considered. Second, it is necessary to perform 
experiments with diabetics whose BG level is highly varied and sensitive 
compared to ordinary people and subjects in various age groups with 
different level of functions in hormone secretion. Finally, a pilot study 
will be carried out before the main experiment to determine the expo-
sure and rest time. 

5. Conclusion 

This study proposed an advanced thermal comfort-prediction model 
with 11 bio-signal features including blood glucose (BG) and salivary 
cortisol (sCOR) that have never been considered in previous studies. In 
line with the development of wearable devices such as a continuous 
blood glucose system, this study aimed to improve the predictive per-
formance of conventional prediction models by adding BG and sCOR to 
the predictor variable. To this end, an advanced thermal comfort- 
prediction model based on supervised learning algorithms was 
proposed. 

The results of this study demonstrated the following: (i) the proposed 
model had significantly better performance than the conventional model 
with 9.5% improvement in accuracy. It is noted that the feature 
importance of BG and sCOR was 11.8% and 10.5%, respectively, 
showing that they were more important than the other bio-signal fea-
tures; (ii) sCOR was the most important bio-signal feature in both gender 
groups, and BG also was a relatively important bio-signal feature at 10.7 
and 13.5%; and (iii) assessment in thermal state perspective was also 
carried out and it showed that BG is the most important bio-signal 
feature in cold condition. 

The proposed model in this study implies the following contribu-
tions: (i) high importance of BG and sCOR suggested the possibility of 
new bio-signal features for prediction model development research in 
the future; (ii) it is expected that if the proposed model is applied to 

smart buildings, more efficient operation of the air conditioning system 
is possible since the proposed model estimates thermal comfort with 
relatively better accuracy; (iii) this study also suggested the gender 
difference in bio-signal and psychological measurements in various 
thermal environments. In other words, if gender-based importance is 
used, the operation of an air conditioning system can use the gender 
ratio of the occupants to offer an optimal thermal comfort zone. 

Considering the characteristics of BG and sCOR, the variation in 
these predictors according to the occupants’ diet or time of the mea-
surement can be implemented to the proposed model in future research 
so that it could be applied to a more general condition. 

CRediT authorship contribution statement 

Hakpyeong Kim: Writing – original draft, Software, Resources, 
Methodology, Investigation, Formal analysis, Data curation. Dahyun 
Jung: Writing – original draft, Validation, Resources, Methodology, 
Investigation, Formal analysis, Data curation. Heeju Choi: Visualiza-
tion, Validation, Investigation, Formal analysis, Data curation, Writing – 
original draft. Taehoon Hong: Writing – review & editing, Validation, 
Supervision, Project administration, Methodology, Investigation, 
Funding acquisition, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This work was supported by the National Research Foundation of 
Korea (NRF) grant funded by the Korea government (MSIT; Ministry of 
Science and ICT) (NRF-2021R1A3B1076769).  

Fig. 8. Conceptual diagram of practical implication.  

H. Kim et al.                                                                                                                                                                                                                                     



Building and Environment 224 (2022) 109551

12

Appendix  

Table A1 
Thermal sensation vote  

Rating − 3 − 2 − 1 0 1 2 3 

Classification Cold Cool Slightly Cool Neutral Slightly Warm Warm Hot   

Table A2 
Thermal Preference  

Rating 0 1 

Classification No preference Preference   

Table A3 
STAI X-1 (Trait anxiety)  

Questionnaire Not at all Somewhat Moderately Very much 

1 I am always in a good mood     
2 I am tired easily     
3 I feel like crying     
4 I am happy like everyone else     
5 I can’t make up mind quickly     
6 I am peaceful     
7 I am calm     
8 I can’t overcome problems     
9 I am worried about trivial things     
10 I am happy     
11 I tend to think hard about anything     
12 I lack self-confidence     
13 I am at peace     
14 I try to avoid difficulties     
15 I am depressed     
16 I am satisfied     
17 I suffer from trivial things     
18 I am disappointed     
19 I am steady person     
20 I am nervous       

Table A4 
STAI X-2 (State anxiety)  

Questionnaire Not at all Somewhat Moderately Very much 

1 I have a calm mind     
2 I am at peace     
3 I am nervous     
4 I feel regretful and sad     
5 I feel at ease     
6 I am embarrassed and do not know what to do.     
7 I am worried about future misfortune.     
8 I am at ease.     
9 I am anxious     
10 I feel comfortable     
11 I am confident     
12 I am annoyed     
13 I am nervous     
14 I am extremely nervous     
15 I am relaxed and warm     
16 I am satisfied     
17 I am warried     
18 I am so excited     
19 I am happy     
20 I feel good      
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