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A B S T R A C T

Radiofrequency ablation (RFA) is a minimally invasive technique that is widely used to ablate solid tumors.
Achieving precise personalized treatment requires feedback information on in situ thermal effects induced by
RFA. Although computer simulations facilitate the prediction of electrical and thermal phenomena associated
with RFA, their practical implementation in clinical settings is hindered by their high computational demands.
In this paper, we propose a physics-guided radiofrequency ablation neural network (PhysRFANet) to enable
real-time prediction of thermal effect during RFA treatment. Three networks, an encoder–decoder based
convolutional neural network (EDCNN), U-Net, and attention U-Net, designed for predicting the temperature
distribution and the corresponding ablation lesion, were trained using biophysical computational models that
integrated electrostatics, bioheat transfer, and cell necrosis, along with magnetic resonance (MR) images of
breast cancer patients. The computational model was validated through experiments using ex vivo bovine liver
tissue. Our model demonstrated a Dice score of 96.3% in predicting lesion volume and a root mean squared
error (RMSE) of 0.5624 for temperature distribution when tested with foreseen tumor images. Notably, even
with unforeseen images, it achieved a Dice score of 93.8% for the ablation lesion and an RMSE of 0.7078
for the temperature distribution. All networks were capable of inferring results within 10 ms. The proposed
technique, applied to optimize the placement of the electrode for a specific target region, holds significant
promise for enhancing the safety and efficacy of RFA.
1. Introduction

Radiofrequency ablation (RFA) is a pivotal technique in the field of
interventional medicine because of its ability to treat various medical
conditions, particularly tumors, with minimal invasiveness (McDermott
and Gervais, 2013; Abd El-Kader et al., 2018; Besler et al., 2020a).
RFA uses the heat generated from electrical currents delivered through
percutaneously inserted electrodes to induce coagulative necrosis in
pathological tissues (Peek and Douek, 2017). Its significance lies in its
effectiveness in eradicating a tumor while preserving healthy surround-
ing tissues, thus offering advantages over traditional surgical resection
such as quick recovery, high efficacy, low complication rates, and
cost-effectiveness (Lim, 2000; Zhu et al., 2013; Berjano, 2006).

Although surgical resection is the preferred treatment for eligible
patients owing to its potential for complete tumor removal, RFA serves
as an effective alternative for those who are unsuitable candidates for
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resection. This may include patients with comorbidities, advanced age,
or tumors located in areas that make surgical intervention risky. RFA
is a minimally invasive option that can effectively target and destroy
tumor cells, providing a valuable treatment option for individuals who
cannot undergo surgery (Lanuti et al., 2009; Yi et al., 2014).

To achieve precise treatment, interventional radiologists adjust the
clinical settings, such as the applied power, current duration, and in-
sertion trajectory of the electrodes (Ho and Min, 2018; Widmann et al.,
2009). However, quantitatively predicting the extent of ablation re-
mains a challenging task, as treatment outcomes are influenced not only
by device settings, but also by individual-specific characteristics and
the surgeon’s expertise. In general planning procedures, the ablation
shapes are commonly assumed to be ellipsoids, based on manufacturer-
provided ablation size guidelines designed primarily for homogeneous
tissue. This approach overlooks the patient-specific factors that are
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Fig. 1. Overall flowchart of real-time prediction method of thermal effect during radiofrequency ablation treatment.
crucial for achieving personalized and precise RFA treatment (Jiang
et al., 2010; McCreedy et al., 2006).

Theoretical models and computer simulations serve as crucial tools
for predicting the ablated region and improving therapeutic outcomes
for individual patients by providing vital information on the electri-
cal and thermal behaviors during RFA procedures (Berjano, 2006).
The temperature distribution and the corresponding ablation lesions
were obtained through the analysis of multi-biophysics models, which
represent electrical conduction, bioheat transfer, and cell necrosis pro-
cesses (Kröger et al., 2006; Shahidi and Savard, 1994; Singh and
Repaka, 2018). However, achieving accurate predictions incurs signifi-
cant computational cost, thereby imposing constraints on their practical
application in clinical settings (Voglreiter et al., 2018).

Several efforts have been made to enhance the simulation speed
for the intraoperative utilization of computational methods during
RFA (Mariappan et al., 2017; Kath et al., 2019; Hoffer et al., 2022).
These studies achieved significant reductions in computation time ow-
ing to the use of massively parallel computing on graphics processing
units (GPU). However, even with these advancements, simulation times
still range from a few seconds to minutes, depending on the size of
the simulation domain. Furthermore, prolonged simulation times are
necessary when utilizing more sophisticated models, such as coupled
multiphysics analysis (Akbari and Giannacopoulos, 2021), and when
considering the phase change effect of biological tissue (Abraham and
Sparrow, 2007).

Recently, there has been an emerging trend to leverage deep learn-
ing algorithms for the efficient representation of complex physical
phenomena that pose challenges for characterization through tradi-
tional mathematical analysis (Lutter et al., 2019; Mendizabal et al.,
2020; Choi et al., 2022; Shin et al., 2023; Salehi and Giannacopoulos,
2022; Koh et al., 2022; Shin et al., 2024; Park et al., 2023). Within the
domain of RFA treatment, a noteworthy study by Besler et al. (2020b)
exemplified the potential of implementing real-time estimation of RFA
lesion depth using a machine learning model combined with a statisti-
cal merging approach. The proposed system utilized multi-frequency
impedance measurement data, achieving accuracy at the millimeter
resolution. However, it is limited to providing only one-dimensional
depth information of RFA lesions in a simple tissue representation
2 
model. For the practical efficacy of such deep learning models in
clinical settings, it is essential to accurately represent the multiphysics
phenomena arising from the intricate morphologies of lesions.

In this paper, we present PhysRFANet, a set of deep neural net-
works designed to learn from computational simulations that cap-
ture the multiphysics phenomena inherent in RFA. Training data were
generated through computational simulations of electrostatic, bioheat
transfer, and cell necrosis models using magnetic resonance (MR) im-
ages obtained from 11 patients with breast cancer. The accuracy of
the computational model was validated experimentally using ex vivo
bovine liver tissues. We developed six network models based on three
different architectures, each serving two specific purposes: to predict
the temperature distribution and corresponding ablation lesion. The
performance of these network models was evaluated using various
metrics. To evaluate the robustness and generality of our model, we
conducted further assessments using two new sets of patient data that
were entirely excluded from the training process. A flowchart of the
study process is shown in Fig. 1. The significance of the proposed model
is summarized as follows.

• Computational biophysical models reflect the geometric charac-
teristics of an individual patient’s tumor using magnetic reso-
nance (MR) imaging.

• Prediction accuracy of the computational model was validated
using ex vivo bovine liver tissue.

• Neural network models were trained on the results of the compu-
tational model.

• Real-time personalized predictions of the thermal distribution and
cell necrosis regions are available, given the tumor geometry and
electrode placement.

2. Computational model

In this section, we describe the formulation of our computational
model, which includes a geometric representation of the tumor tissue,
electrical field calculation, bioheat transfer algorithm, and cell necrosis
model.
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Fig. 2. An example of tumor geometric modeling from an MR image. (a) Overlay of
tumor segmentation result (yellow region) onto the corresponding axial view MR image.
The red box shows the boundary of the cropped FOV, and (b) shows the segmentation
image in the FOV. The yellow region represents the tumor area, whereas the blue
region represents normal tissue.

2.1. Tumor geometric model via MR image

MR images of 13 breast cancer patients from a publicly available
dataset (Saha et al., 2018) were used to model the tumor geometry.
The datasets consisted of dynamic contrast enhanced (DCE) MR images
and the corresponding segmentation images, which were annotated by
radiologists to depict the cancerous regions for each patient. All images
were resampled to isotropic voxels of 1.0 × 1.0 × 1.0 mm3 using the
Lanczos filter algorithm (Burger and Burge, 2009). For computational
efficiency, the simulation domain for each patient was defined by
cropping it to a field of view (FOV) centered at the volumetric center
of the tumor region with a size of 40 × 40 × 40 mm3. The FOV size
was sufficient to encompass the entire volume of the segmented tumor
(3021 ± 2789 mm3, N = 13). A visual representation of the geometric
model of the tumor using MR images is shown in Fig. 2.

Employing segmented binary data from MR image data helps to
avoid overfitting. Segmented tumor data can help avoid overfitting
compared to the original MR image data for several reasons. First, it
provides a focused view by isolating the region of interest, reducing
the complexity of the input data, and removing irrelevant details. This
allows the model to learn features specific to tumor detection and
classification. Additionally, segmented data has lower dimensionality,
which is easier to generalize from and reduces the risk of overfitting
due to the ‘‘curse of dimensionality’’. By focusing on the tumor region,
the signal-to-noise ratio is enhanced, minimizing the likelihood of the
model picking up noise and learning spurious patterns that do not
generalize well to the new data. Segmented tumor data also benefit
from clearer and more consistent annotations because the tumor is ex-
plicitly segmented, making it easier for models to learn from accurately
annotated data.

2.2. Temperature-dependent electro-static analysis for electrical field

The quasi-static version of Maxwell’s equation was used to compute
the resistive heating during RFA. This is relevant because within the
RFA frequency range of 450–550 kHz, the wavelength of the electric
field is substantially larger than the size of the active electrode, as
noted by Singh and Repaka (2017). Thus, the electric potential was
determined by solving the generalized Laplace equation

∇ ⋅ (𝜎∇𝑉 ) = 0 in 𝛺, (1)

where 𝜎 is the electrical conductivity (S/m), 𝑉 is the electric potential
(V) with the following boundary conditions, and 𝛺 is a volumetric
domain for analysis (Schumann et al., 2011):
{

𝑉 (𝐱) = 𝑉p, 𝐱 ∈ 𝛤e, (a)
𝐧(𝐱) ⋅ ∇𝑉 (𝐱) = 0, 𝐱 ∈ 𝛤s, (b) (2)

where 𝑉p is the applied power (W), 𝛤e is the boundary of the domain
covered by the electrodes, and 𝛤s is the exterior surface boundary of
simulation space.
3 
Fig. 3. The illustration represents a single-needle ablation electrode utilized for tumor
ablation. A source voltage applied to the conductive tip facilitates the therapeutic
intervention.

The finite element formulation of Eqs. (1) and (2) is expressed as
follows:

∫𝛺
𝜎𝑡𝛿𝐕𝑇

(

𝜕𝐍𝑇

𝜕𝑥
𝜕𝐍
𝜕𝑥

+ 𝜕𝐍𝑇

𝜕𝑦
𝜕𝐍
𝜕𝑦

+ 𝜕𝐍𝑇

𝜕𝑧
𝜕𝐍
𝜕𝑧

)

𝐕 𝑑𝛺 = 0, (3)

where 𝐕 is the discretized electrical potential at finite element nodes,
𝐍 is a linear interpolation matrix (i.e., 𝑉 = 𝐍𝐕), and 𝛿 indicates a
variational symbol. Employing the standard finite element solution pro-
cedure with Eq. (3), the solution of electrical potential is obtained. The
volumetric heat source due to resistive heating during RFA, denoted by
𝑄r (W/m3), is quantified by

𝑄𝑡
r = 𝜎𝑡|∇𝑉 |

2, (4)

where the calculated 𝑄𝑡
r is utilized as the heat input for the bioheat

transfer analysis. It is known that the changes of the temperature-
dependent electrical conductivity affect the outcome of the models
(Chang, 2003; Watanabe et al., 2008; Trujillo and Berjano, 2013). The
electrical conductivity 𝜎𝑡 changes with temperature as follows:

𝜎𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜎normal
(

1 + 0.02
(

𝑇 (𝑡, 𝐱) − 𝑇0
))

, 𝑇 < 100 and 𝐱 ∈ 𝛺normal,
0.0001 𝜎normal, 𝑇 ≥ 100 and 𝐱 ∈ 𝛺normal,
𝜎tumor

(

1 + 0.02
(

𝑇 (𝑡, 𝐱) − 𝑇0
))

, 𝑇 < 100 and 𝐱 ∈ 𝛺tumor,
0.0001 𝜎tumor, 𝑇 ≥ 100 and 𝐱 ∈ 𝛺tumor,

(5)

where subscripts ‘‘normal’’ and ‘‘tumor’’ represent normal tissue and
tumor tissue, respectively.

Finite element models were constructed based on the tumor geom-
etry described in Section 2.1. The electrical conductivity constant of
the tumor tissue, 𝜎tumor, was set to 4 S/m, whereas that of the normal
tissue, 𝜎normal, was set to 0.4 S/m (Zhao et al., 2013). The input voltage
generated by an electrode tip with a length of 10 mm and a diameter
of 1 mm was modeled by applying boundary conditions in Eq. (2) to all
nodes encompassed by the electrode. Located at the end of the needle,
the electrode tip releases high-frequency alternating current into the
surrounding tissue, generating heat through radiofrequency energy. An
illustration of a single-needle ablation electrode is presented in Fig. 3.

2.3. Bioheat transfer analysis for heat propagation

The Pennes bioheat model (Pennes, 1948) was used to model
the bioheat transfer inside the breast tissue during RFA using the
temperature-dependent resistive heat generation term:

𝜌𝑐 𝜕𝑇 = ∇ ⋅ (𝜅∇𝑇 ) + 𝜌 𝑐 𝜔 (𝑇 − 𝑇 ) +𝑄 +𝑄𝑡 , (6)

𝜕𝑡 b b b b m r
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where 𝜌 is the density of tissue (kg/m3), 𝑐 is the specific heat capacity of
tissue (J/kg/K), 𝑇 is temperature (°C), 𝑡 is ablation time, 𝜅 is thermal
conductivity of tissue (W/m/K), 𝜌b is the density of blood, 𝑐b is the
specific heat of blood, 𝜔b is the perfusion rate of blood, 𝑇b is the
temperature of blood (37 °C), 𝑄m is metabolic heat generation (W/m3),
and 𝑄𝑡

r is temperature-dependent resistive heat generation (W/m3)
obtained from Eqs. (4) and (5).

To solve Eq. (6), the finite-difference time-domain (FDTD) scheme
was used (Berjano, 2006; Labonte, 1994; Kim et al., 2023),
𝜌𝑖,𝑗,𝑘𝑐𝑖,𝑗,𝑘

𝛥𝑡

(

𝑇 𝑡+𝛥𝑡
𝑖,𝑗,𝑘 − 𝑇 𝑡

𝑖,𝑗,𝑘

)

=
𝜅𝑖,𝑗,𝑘
𝛥𝑠2

[(

𝑇 𝑡
𝑖+1,𝑗,𝑘 − 𝑇 𝑡

𝑖,𝑗,𝑘

)

−
(

𝑇 𝑡
𝑖,𝑗,𝑘 − 𝑇 𝑡

𝑖−1,𝑗,𝑘

)]

+
𝜅𝑖,𝑗,𝑘
𝛥𝑠2

[(

𝑇 𝑡
𝑖,𝑗+1,𝑘 − 𝑇 𝑡

𝑖,𝑗,𝑘

)

−
(

𝑇 𝑡
𝑖,𝑗,𝑘 − 𝑇 𝑡

𝑖,𝑗−1,𝑘

)]

+
𝜅𝑖,𝑗,𝑘
𝛥𝑠2

[(

𝑇 𝑡
𝑖,𝑗,𝑘+1 − 𝑇 𝑡

𝑖,𝑗,𝑘

)

−
(

𝑇 𝑡
𝑖,𝑗,𝑘 − 𝑇 𝑡

𝑖,𝑗,𝑘−1

)]

+ 𝜌b𝑐b𝜔b

(

𝑇b − 𝑇 𝑡
𝑖,𝑗,𝑘

)

+𝑄m;𝑖,𝑗,𝑘 +𝑄𝑡
r;𝑖,𝑗,𝑘,

(7)

where 𝛥𝑡 is the discretized time interval, 𝜌𝑖,𝑗,𝑘, 𝑐𝑖,𝑗,𝑘, 𝑇𝑖,𝑗,𝑘, 𝜅𝑖,𝑗,𝑘, 𝑄m;𝑖,𝑗,𝑘,
and 𝑄𝑡

r;𝑖,𝑗,𝑘 are respectively the density, specific heat capacity, tempera-
ture, thermal conductivity, metabolic heat generation, and temperature-
dependent resistive heat generation of tissue at the grid index 𝑖, 𝑗, 𝑘
of the simulation domain, and 𝛥𝑠 is the spatial discretization interval
(i.e., grid interval).

Based on the segmented MR image in Section 2.1, thermal proper-
ties of the tumor tissue (density of 1050 kg/m3, specific heat capacity
of 3770 J/kg/K, thermal conductivity of 0.48 W/m/K), normal tis-
sue(density of 911 kg/m3, specific heat capacity of 2348 J/kg/K,
thermal conductivity of 0.21 W/m/K), blood perfusion (blood density
of 1050 kg/m3, blood specific heat capacity of 3617 J/kg/K, blood
perfusion rate of 5.3 s−1 for tumor tissue, blood perfusion rate of 0.2 s−1

for normal tissue), and metabolic heat (400 W/m3 for normal tissue and
13,600 W/m3 for tumor tissue) were assigned to the simulation (Singh
and Repaka, 2018). The initial temperatures of the tissues and blood
were set to 37 ◦C. The simulations were conducted by applying the
temperature-dependent resistive heat (i.e., 𝑄𝑡

r;𝑖,𝑗,𝑘) for 180 s with a time
resolution (i.e., 𝛥𝑡) of 0.1 s and calculating the temperature distribution
of the entire spatial domain at each time interval.

2.4. Cell necrosis model

The thermal damage of biological tissue (𝛹 ) is quantified using
the first-order Arrhenius rate equation as follows (Singh and Repaka,
2018):

𝛹 (𝑡) = ∫

𝑡

0
𝐴 exp

(

−𝐸a
𝑅𝑇 (𝑡)

)

𝑑𝑡, (8)

where 𝐴 is the frequency factor (= 1.18 × 1044), 𝐸a is the activation
energy for irreversible damage reaction (= 3.02 × 105 J/mol), 𝑅 is the
universal gas constant (= 8.3134 J/mol/K), 𝑇 is the temperature (K) of
the corresponding tissue.

The temperature distribution for each time step obtained in Sec-
tion 2.3 was utilized to evaluate the cumulative tissue damage values
of 𝛹 (𝑡) for every voxel. To delineate irreversible thermal damage, we
applied a threshold of 𝛹 (𝑡) > 1, classifying values exceeding this
threshold as the damaged tissue region and values below it as the viable
tissue region (Henriques, 1947).

2.5. Experimental validation

In this section, we describe the experimental setup for RFA designed
to validate the accuracy and reliability of our RFA computational
model. Freshly excised bovine liver procured from a local butcher shop
on the day of the experiment was used as the experimental tissue.
Seven cuboidal samples, each measuring approximately 10 × 10 × 10
4 
Fig. 4. Experimental setup for ex vivo tissue RFA. (a) A bovine liver sample is cut
into a cuboidal shape and carefully placed within a 3D-printed container, (b) enabling
accurate ablation at its center.

cm3, were prepared by cutting the bovine liver to fit within a custom-
designed 3D-printed container, as shown in Fig. 4(a). This container
was designed to facilitate precise RF ablation at the center of the
liver sample, followed by halving the sample at the same location, as
illustrated in Fig. 4(b).

A 17-gauge monopolar electrode with a tip length of 10 mm (V-tip;
RF Medical, Seoul, Korea) was inserted at a depth of approximately
5 cm and positioned at the center of the liver sample. Radiofrequency
waves were emitted from the electrode tip into the surrounding tissue
for 3 min using a 200 W generator (M-3004; RF Medical, Seoul, Korea).
After completing the ablation, the electrode was removed, and the
bovine liver sample was bisected to obtain cross-sectional plane images.
Distinct areas of coagulative necrosis were revealed in these images,
identified and segmented using the ‘‘Segment Anything in Medical
Images’’ code (Ma et al., 2023) for subsequent quantitative analysis.

The proposed computational model was validated using experimen-
tal results. A homogeneous tissue space with a resolution of 1 mm,
spanning 40 × 40 × 40 mm3, was utilized, with an electrode placed
at the central location of the simulation space. The initial electrical
conductivity of the bovine liver tissue was set to 0.69 S/m (Fuentes
et al., 2010). The thermal properties of the tissue included a density
of 1079 kg/m3, a specific heat capacity of 3415.0 J/kg/K, and a
thermal conductivity of 0.5 W/m/K (Silva et al., 2020); blood perfusion
and metabolic heat terms were disregarded. The heat generated by
radiofrequency energy was applied over a total duration of 180 s, using
a time step of 0.1 s, starting from an initial temperature of 20 ◦C.

3. Neural network models

In this section, we employ three network models with different
architectures for performance comparison. Specifically, for the purpose
of basic performance benchmarking, the encoder–decoder based CNN
(EDCNN) architecture was employed. The U-Net architecture with its
symmetric encoder–decoder structure complemented by skip connec-
tions was the primary focus of this study. This design is known for
its use of skip connections that combine deep coarse-grained feature
maps from the decoder and shallow fine-grained feature maps from the
encoder, effectively enhancing the target details (He et al., 2016; Huang
et al., 2017; Hariharan et al., 2015; Lin et al., 2017).

Our objective is to develop lightweight neural network models
that can perform predictions in real time. This involves optimizing
the model architecture to be both efficient and responsive, ensuring
that it can handle tasks quickly enough to meet the demands of real-
time applications. By focusing on reducing computational complexity
and memory usage, we aim to create a model that not only delivers
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Table 1
Splitting of foreseen and unforeseen test datasets. The acronym ‘‘BT’’ represents the
breast tumor dataset.

Training dataset Test dataset

5000 (BT1-BT11) Foreseen: 500 (BT1-BT11)
Unforeseen: 500 (BT12-BT13)

accurate predictions but also does so with the speed necessary for real-
time processing. Compared to networks like GANs (Goodfellow et al.,
2014), diffusion models (Ho et al., 2020), and transformers (Vaswani
et al., 2017; Liu et al., 2021), architectures such as EDCNN, U-Net,
and Attention U-Net are significantly less computationally intensive
and require fewer parameters, making them cheaper in terms of both
memory usage and processing power.

3.1. Training and test data generation

The datasets used to train and test the network model were derived
from the computational model described in Section 2. To ensure a
diverse dataset, we conducted RFA simulations for each breast tumor
MR image, utilizing 500 randomly placed electrode tip locations and
directions within the tumor regions. Segmented breast tumor images
(size of 41 × 41 × 41) along with binary images (size of 41 × 41 × 41)
epresenting the placement of the electrode tip were utilized as net-
ork inputs, and either the corresponding coagulative tissue necrosis

ones (size of 41 × 41 × 41) or temperature distributions (size of
1 × 41 × 41) obtained from the RFA simulation were respectively
mployed for the network output.

For the training datasets, we collected 5500 RFA simulation results
erived from 11 distinct breast tumor images (BT1-BT11) of different
atients. These data were then randomly split into 5000 samples for
raining and 500 samples for testing. Out of the 5000 training data
amples, 200 were allocated to the validation set for hyperparameter
uning. In contrast, to evaluate the network’s performance on unseen
R images of breast tumors from a practical perspective, we utilized

00 RFA simulation results sourced from two distinct tumors (BT12 and
T13), each from a separate patient, as another test dataset. For better
nderstanding, please refer to Table 1.

In the training of PhysRFANet, we carefully selected various hyper-
arameters to optimize the performance. To configure the optimization
trategy of our model, we selected the Adam optimizer, initialized it
t a learning rate of 0.001, and set the batch size to 16 for efficient
rocessing. For the hyperparameter tuning during training, we imple-
ented the ‘‘ReduceOnPlateau’’ learning rate scheduler. The scheduler
as configured to reduce the learning rate by a factor of 0.5 if no

mprovement was observed in the valid loss over the five epochs. This
pproach allows for dynamic adjustment of the learning rate based on
he performance of the model. The training was conducted for 100
pochs, utilizing ‘‘EarlyStopping’’ with a patience parameter of 10 to
revent overfitting and restore the model weights to those with the
est validation performance. All training was performed on a single
PU, which utilized its parallel processing capabilities to expedite the

raining process.

.2. Network architectures for the coagulative necrosis

In this section, we provide a thorough overview of the PhysRFANet
rchitectures, showcasing them using visual diagrams complemented
y in-depth explanations. A visual explanation of this is shown in
ig. 5. Each component and layer is detailed, emphasizing their specific
oles and contributions to the overall system, as evidenced by ablation
tudies.

The EDCNN model shown in Fig. 5(a) is a CNN specifically tailored
or 3D data. It consists of an encoder and decoder, which are a series

f 3D convolutional layers, each followed by batch normalization and
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eLU activation, designed to extract and compress features from the
nput. The encoder uses strides to reduce the spatial dimensions, similar
o downsampling. The decoder, aimed at reconstructing the data to a
igher resolution, employs transposed 3D convolutional layers accom-
anied by batch normalization and ReLU activations. In the forward
ass, the model concatenates two types of input data, indicating its
apability to handle dual input modalities, a common scenario in
edical imaging tasks. The final layers reduce the channel dimensions

o one to match the size of the input. In addition, the model adopts
pecific weight initialization strategies for its layers, indicating a focus
n efficient training convergence.

The U-Net architecture shown in Fig. 5(b) includes encoder, mid-
ayers, and decoder classes. The encoder performs downsampling and
id-layers processing of features at the network bottleneck, while the
ecoder handles the upsampling. These modules use convolutional
ayers, batch normalization, and activation functions suitable for pro-
essing 3D data. The U-Net architecture concatenates and processes
nputs through the downscaling, middle, and upscaling modules. The
rchitecture is designed for tasks that involve volumetric data.

The Attention U-Net model shown in Fig. 5(c) is a sophisticated
eural network architecture that blends a U-Net structure with self-
ttention mechanisms. This design is especially suitable for complex ap-
lications, such as medical image analysis, which require both local and
lobal contextual understanding. The network features self-attention
odules that implement multi-head attention to capture long-range
ependencies within the data, accompanied by layer normalization
nd feedforward networks for further refinement. The architecture is
tructured along a U-Net framework, with the encoder constituting the
ownsampling path. These modules employ 3D convolutions, batch
ormalization, and LeakyReLU activation to incrementally extract com-
lex features while reducing the spatial dimensions. The middle layers
rocess these features using skip connections for added efficiency.
he upsampling path, which is composed of a decoder, increases the
patial dimensions and integrates features from the downsampling
ath, thereby enhancing detail retention. Self-attention modules are
nterspersed in the upsampling path, augmenting the network’s focus
n salient features. The forward method defines the workflow starting
ith the concatenation of two input data types and proceeding through

he successive network layers with optional interpolation of the input
nd output to specific dimensions.

.3. Network architectures for the temperature distribution

The same network architectures described in Section 3.2 are utilized
or analyzing the temperature distribution. The primary distinction be-
ween the networks shown in Figs. 5(a) and 6 lies in their outputs. As in
he previous section, ablation studies are conducted to determine how
etwork performance is affected by changes in various components.

.4. Loss function

For network training of the ablated lesion zone, we employed the
ice loss function, which is defined as follows:

Dmg(𝑥, 𝑥) = Dice(𝑥, 𝑥) = 1 −
2
∑𝑛

𝑖=1 𝑥𝑖𝑥𝑖
∑𝑛

𝑖=1 𝑥
2
𝑖 +

∑𝑛
𝑖=1 𝑥

2
𝑖

, (9)

where 𝑥𝑖 and 𝑥𝑖 represent the components at the 𝑖th position in the
ground truth and the corresponding ablation lesion prediction, respec-
tively.

For network training of the temperature distribution, we utilized a
loss function that combined the mean squared error (MSE), weighted
MSE, and Dice(>50) loss. To introduce a weighted MSE loss function,
define a mask 𝑚 as follows:

𝑚𝑖 =

{

1, if 𝑥𝑖 > 50 ◦C,
(10)
0, otherwise.
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Fig. 5. Three network architectures: (a) EDCNN, (b) U-Net, and (c) Multihead-Self-Attention U-Net architectures. The input 1 is the geometry of the electrode tip and the input 2
is the segmented breast tumor from the MR image. The output is the predicted ablation lesion zone. For all RFA lesion zone network training, the Dice loss function is used.

Fig. 6. EDCNN architecture, where Input 1 comprises the electrode tip geometry and Input 2 is the segmented breast tumor from the MR image. The output is the predicted
temperature distribution map. The U-Net and Attention U-Net architectures employed for temperature distribution prediction are identical to those in Fig. 5(b) and (c), with the
primary difference being the output, which is now the temperature distribution. The combined loss function Eq. (13) with (𝛼, 𝛽, 𝛾) = (0.7, 0.0, 0.3) is used for all network training
for the temperature distribution.
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Fig. 7. Comparison of simulated coagulative necrosis and RFA experiment results for two homogeneous liver tissue samples. The real electrode tip is positioned at the center of
the bovine liver placed in a cubic box, and similarly, the electrode tip in the numerical simulation is located at the center of the computational domain. This alignment ensures
that the actual necrotic region closely matches the simulation results. The leftmost figures illustrate the numerical simulation outcomes. The second column represents experimental
results. The third column shows segmented necrotic regions (red) obtained using MedSAM (Ma et al., 2023). The last column displays the segmented coagulative necrotic regions
(red) with overlaid simulated results. Naturally, the deterministic numerical simulation results remain the same under identical conditions; however, the experimental necrotic
regions demonstrate slight variations.
where 𝑥𝑖 and 𝑥𝑖 denote the elements at the 𝑖th position in the ground
truth and the corresponding temperature distribution prediction, re-
spectively. We implemented the weighted MSE loss function that ap-
plies the weight 𝜔 to the MSE loss for elements where the mask is
1 (above the threshold). The MSE loss remains unchanged where the
mask is 0, enabling accurate prediction of the temperature distribution
in the region of interest with elevated temperatures exceeding 50 ◦C.
The weighted MSE loss function is defined as

1(𝑥, 𝑥) =
1
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑥𝑖)2

(

𝜔𝑚𝑖 + (1 − 𝑚𝑖)
)

. (11)

The Dice(>50) loss function is defined as

Dice(>50)(𝑥, 𝑥) = 1 −
2
∑𝑛

𝑖=1 𝑥𝑖 (>50)𝑥𝑖 (>50)
∑𝑛

𝑖=1 𝑥
2
𝑖 (>50) +

∑𝑛
𝑖=1 𝑥

2
𝑖 (>50)

. (12)

In particular, the Dice(>50) loss function relies on the temperature
(50 ◦C) at which the cell death pattern transitions to a predominance
of necrosis, as discussed in Zhang et al. (2018). The combined loss
function is as shown below:

Temp(𝑥, 𝑥) =
𝛼
𝑛

𝑛
∑

𝑖=1
(𝑥𝑖 − 𝑥𝑖)2 + 𝛽1(𝑥, 𝑥) + 𝛾 Dice(>50)(𝑥, 𝑥), (13)

where 𝑥 and 𝑥 are predictions and ground truth, respectively, and 𝛼, 𝛽,
and 𝛾 are weights.

4. Results

In this section, we present the evaluation metrics employed, experi-
mental validation, evaluation of the prediction accuracy, and inference
time of the proposed network models. To demonstrate the robustness
of the developed network, a validation was conducted using unforeseen
tumor image data obtained from a new patient.

4.1. Evaluation metrics

All the evaluation metrics represent the differences between the
predicted and simulated temperatures. The root mean squared error
(RMSE), mean absolute error (MAE), and Dice score were used to evalu-
ate the test outcomes for the temperature distribution. Specifically, the
Dice scores, represented as Dice(>40) and Dice(>50), correspond to the
temperature maps exceeding 40 ◦C and 50 ◦C, respectively. In addi-
tion, Dice score (Sorenson, 1948; Dice, 1945), Jaccard score (Jaccard,
1912), and Hausdorff distance (Rockafellar and Wets, 1998) are used to
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evaluate test outcomes of the ablation lesions. The Hausdorff distance
𝑑H(𝑋, 𝑌 ) between two sets 𝑋 and 𝑌 is defined as follows:

𝑑H(𝑋, 𝑌 ) = max
{

max
𝑥∈𝑋

𝑑(𝑥, 𝑌 ),max
𝑦∈𝑌

𝑑(𝑋, 𝑦)
}

, (14)

where 𝑑(𝑎, 𝐵) = min𝑏∈𝐵 𝑑(𝑎, 𝑏).

4.2. Experimental validation

In this section, we compare the outcomes of the RFA simulations
with the RFA experimental results to validate the accuracy of the
numerical RFA simulation. Because the bovine livers used in this ex
vivo experiment did not include tumors, we did not incorporate tumors
in the numerical simulation. Our primary objective was to demonstrate
that in a homogeneous liver tissue, the numerical simulation accurately
represents the real necrotic regions under the same conditions. This
explains why the numerical simulation results for Samples 1 and 2 in
Fig. 7 are identical. Although we were unable to include real tumor
tissue in this experiment, we showed the similarity between the numeri-
cal results and experimental outcomes in a homogeneous environment.
Except for the ex vivo experiment described in Section 4.2, all other
numerical simulations included tumor tissues. Fig. 7 presents a compar-
ative analysis of two exemplary samples, selected from a total of seven
samples, demonstrating the simulated coagulative necrosis alongside
the results of the RFA experiments.

Table 2 shows the length measurements, both horizontally and
vertically, passing through the center of gravity of the necrotic re-
gion, along with its corresponding area. The center of gravity was
determined using the scipy.ndimage.center_of_mass func-
tion (SciPy, 2023), and the horizontal and vertical lengths were ob-
tained using the ImageJ software (Schneider et al., 2012). The results
demonstrated an average accuracy within 3.28% for the aspect of
the area. As shown in Table 2, we also included the t-test results
to demonstrate that the experimental samples were sufficiently close
to the simulation results. A 𝑝-value greater than 0.05 indicates that
the simulation results are a good representation of the experimental
samples.

4.3. Training and validation process

In this section, we examine the training and validation processes
of the models used to predict the ablation lesions and temperature
distribution. The loss curves depict how the training and validation
losses of the model evolved over the training epochs. These graphs
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Table 2
Comparison of RFA simulation outcomes and experimental segmentation data using various metrics. The term ‘‘samples’’ denotes the experimental
sample numbers. ‘‘Horizontal’’ and ‘‘Vertical’’ refer to the lengths of lines in millimeters (mm), and ‘Area’ signifies the segmentation size in square
millimeters (mm2). The ‘‘Difference’’ columns show the deviation of each sample from the simulation results. Descriptive statistics, differences,
95% confidence intervals (CI), and t-test results for each sample compared to simulation values are also provided. Including the 𝑡-statistic and
𝑝-value in the table allows for detailed statistical analysis, indicating whether there is a significant difference between the experimental samples
and the simulation values. Since the 𝑝-value is greater than 0.05, this suggests no significant difference, indicating that the experimental samples
are sufficiently close to the simulation results.
Sample Horizontal (mm) Vertical (mm) Area (mm2)

Value Difference (%) Value Difference (%) Value Difference (%)

1 19.67 −1.33 (−6.33%) 15.87 −0.13 (−0.81%) 255.71 −9.29 (−3.51%)
2 20.51 −0.49 (−2.33%) 15.72 −0.28 (−1.75%) 304.93 +39.93 (+15.07%)
3 23.12 +2.12 (+10.10%) 14.03 −1.97 (−12.31%) 253.33 −11.67 (−4.40%)
4 17.72 −3.28 (−15.62%) 12.73 −3.27 (−20.44%) 212.15 −52.85 (−19.94%)
5 16.12 −4.88 (−23.24%) 15.73 −0.27 (−1.69%) 223.52 −41.48 (−15.65%)
6 21.84 +0.84 (+4.00%) 16.41 +0.41 (+2.56%) 307.29 +42.29 (+15.96%)
7 19.51 −1.49 (−7.10%) 16.69 +0.69 (+4.31%) 237.29 −27.71 (−10.46%)

avg ± sd 19.78 ± 2.37 15.31 ± 1.42 256.32 ± 37.33
Simulation 21.00 16.00 265.00

95% CI [17.59, 21.97] [14.00, 16.62] [221.80, 290.84]
𝑡-statistic −1.36 −1.28 −0.62
p-value 0.223 0.246 0.561
Fig. 8. Comparison of training and validation losses across different models. (a) displays the training and validation losses for ablation lesions, while (b) illustrates the training
and validation losses for temperature distribution.
provide valuable insights into the learning dynamics of each model,
including how quickly they converge, whether they overfit, and how
well they are generalized to the validation data.

As shown in Fig. 8, both the U-Net and Attention U-Net demon-
strated effective learning and strong generalization. In particular, At-
tention U-Net consistently outperformed across both tasks, exhibiting
lower and more stable loss curves during both training and validation.
This indicates that Attention U-Net is the most robust model and is
highly capable of generalizing unseen data.

4.4. Evaluation of ablation lesion with foreseen/unforeseen test dataset

We presented an evaluation of the RFA lesion zone, demonstrating
the performance of three different network architectures using both
foreseen and unforeseen test datasets. Table 3 presents the prediction
accuracy of the damaged volume for each network model under the
conditions of the foreseen and unforeseen datasets. In the case of
testing using a foreseen dataset, both the U-Net and Attention U-Net
architectures demonstrated a higher predictive accuracy than the ED-
CNN. Specifically, U-Net and Attention U-Net exhibited nearly identical
accuracies with a Dice score of 96.3%. However, the test using an
unforeseen dataset showed a slightly lower accuracy than the foreseen
dataset tests. However, when the Attention U-Net architecture was
used, it achieved the highest Dice accuracy of 93.8% among the tested
network models for the unforeseen dataset.
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Table 3
Comparison of prediction accuracy for ablation lesion zone on foreseen/unforeseen test
datasets.

Test sets Networks Dice Jaccard Hausdorff

Foreseen
EDCNN 0.9368 0.8844 1.3516
U-Net 0.9555 0.9161 1.0844
Att. U-Net 0.9633 0.9301 1.0632

Unforeseen
EDCNN 0.9116 0.8411 1.3489
U-Net 0.9352 0.8801 1.2760
Att. U-Net 0.9387 0.8860 1.1242

Fig. 9 shows an exemplar graphical comparison of the ablation
lesion predictions with an unforeseen test dataset. An upward trend in
accuracy was observed across the EDCNN, U-Net, and Attention U-Net,
with each subsequent model exhibiting improved performance over its
predecessor. Among the three models, the Attention U-Net exhibited
the highest accuracy, indicating a progressive enhancement in the
ability to analyze and interpret data correctly with each advanced
model iteration.

4.5. Evaluation of temperature distribution with foreseen/unforeseen test
dataset

Prior to assessing the performance of the presented network models
in predicting temperature distribution, we conducted tests involving
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Fig. 9. Comparison of ablation lesion predictions from various networks on an unforeseen test dataset with the target (simulation result) for a single sample. A positive trend in
accuracy is observed in the order of EDCNN, U-Net, and Attention U-Net.
Table 4
Comparing the performance of loss functions using different weight combinations on the foreseen and unforeseen test datasets for the
temperature distribution. The U-Net is employed for this evaluation. The row highlighted in gray indicates the weight combination
that delivers the best overall performance for both the foreseen and unforeseen test datasets. (num_epochs = 30).

(𝛼, 𝛽, 𝛾) Foreseen Unforeseen

MSE RMSE MAE Dice(>40) Dice(>50) MSE RMSE MAE Dice(>40) Dice(>50)
(1.0, 0.0, 0.0) 0.5856 0.7459 0.4571 0.9695 0.9692 0.9246 0.9435 0.6059 0.9642 0.9523
(0.9, 0.1, 0.0) 0.6588 0.7911 0.4825 0.9704 0.9715 1.0160 0.9910 0.6394 0.9620 0.9467
(0.9, 0.0, 0.1) 0.6559 0.7891 0.4717 0.9673 0.9712 1.0198 0.9921 0.6357 0.9610 0.9460
(0.8, 0.2, 0.0) 0.9148 0.9324 0.5910 0.9758 0.9668 1.4023 1.1552 0.7471 0.9632 0.9391
(0.8, 0.1, 0.1) 0.6349 0.7764 0.4667 0.9663 0.9683 1.0795 1.0193 0.6501 0.9620 0.9486
(0.8, 0.0, 0.2) 0.6817 0.8043 0.4949 0.9714 0.9724 1.1685 1.0587 0.6809 0.9603 0.9457
(0.7, 0.3, 0.0) 0.7061 0.8183 0.4999 0.9694 0.9617 1.2274 1.0843 0.7104 0.9643 0.9328
(0.7, 0.2, 0.1) 0.7129 0.8276 0.5112 0.9531 0.9518 1.1441 1.0435 0.6590 0.9507 0.9358
(0.7, 0.1, 0.2) 0.9385 0.9461 0.6226 0.9775 0.9611 1.7180 1.2840 0.8643 0.9639 0.9247
(0.7, 0.0, 0.3) 0.5342 0.7124 0.4249 0.9668 0.9701 0.8934 0.9263 0.5857 0.9627 0.9539
(0.6, 0.4, 0.0) 0.6127 0.7634 0.4584 0.9671 0.9730 0.8944 0.9240 0.5816 0.9595 0.9534
(0.6, 0.3, 0.1) 0.5519 0.7266 0.4349 0.9627 0.9603 0.9615 0.9564 0.5979 0.9555 0.9452
(0.6, 0.2, 0.2) 0.6739 0.8032 0.4914 0.9574 0.9485 1.1725 1.0517 0.6624 0.9523 0.9251
(0.6, 0.1, 0.3) 0.6435 0.7864 0.4872 0.9738 0.9678 1.0209 0.9920 0.6378 0.9651 0.9482
(0.6, 0.0, 0.4) 0.8478 0.8947 0.5518 0.9734 0.9683 1.3125 1.1248 0.7259 0.9639 0.9389
different weight distributions (𝛼, 𝛽, 𝛾) for the combined loss function
defined in Eq. (13). Table 4 indicates that (𝛼, 𝛽, 𝛾) = (0.7, 0.0, 0.3) yields
one of the best metrics. The selection of weights (0.7, 0.0, 0.3) is appro-
priate as minimizing the RMSE requires alpha to be the primary factor,
dominating 𝛽 and 𝛾. The small values of beta and gamma allow for
slight refinements, particularly enhancing the accuracy in critical high-
temperature regions. Therefore, we adopted the determined weight
distribution for the weighted loss function during the training process.

Table 5 presents the prediction accuracy of the temperature distri-
bution for each network model under the conditions of the foreseen and
unforeseen datasets. In the case of a test using the foreseen datasets,
it was observed that Attention U-Net achieved the highest accuracy
among the three network architectures, with an RMSE of 0.5624. In the
case of unforeseen results, there was a slight decrease in the prediction
accuracy compared with the foreseen test results. However, when the
Attention U-Net architecture was used, a notable RMSE of 0.7078 was
observed.
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Table 5
Performance comparisons of temperature distribution on a foreseen/unforeseen test
dataset.

Test sets Networks MSE RMSE MAE Dice(>40) Dice(>50)

Foreseen
EDCNN 0.4172 0.6199 0.3865 0.9594 0.9645
U-Net 0.5441 0.7211 0.4497 0.9742 0.9775
Att. U-Net 0.3299 0.5624 0.3595 0.9734 0.9795

Unforeseen
EDCNN 0.8261 0.8816 0.5507 0.9607 0.9503
U-Net 0.9302 0.9465 0.6108 0.9677 0.9490
Att. U-Net 0.5183 0.7078 0.4623 0.9707 0.9610

Fig. 10 presents an exemplar graphical comparison of the tem-
perature distribution predictions with an unforeseen test dataset. All
three network models exhibited results that closely resembled the target
temperature distribution. Consistent with the results in Table 5, the At-
tention U-Net demonstrated the highest overall accuracy. Although the
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Fig. 10. Comparison of temperature distribution predictions from various networks on an unforeseen test dataset with simulation results for a single sample.
Fig. 11. Comparison of Dice score results and RMSE evaluations for different methods using both foreseen and unforeseen datasets. (a) represents the ablation lesion zone, while
(b) corresponds to the temperature distribution. The three on the left were evaluated using a foreseen dataset, while the three on the right were assessed with an unforeseen
dataset. The median value is denoted by the red horizontal line, while the interquartile range (IQR: from Q1 to Q3) is represented by the rectangle.
weighted Dice scores of U-Net and Attention U-Net were comparable,
Attention U-Net showed lower RMSE and MAE.

Figs. 11(a) and 11(b) show the box plots of the ablation lesion vol-
ume and thermal distribution, respectively. In both cases, it is evident
that the highest accuracy was achieved by Attention U-Net. U-Net is
well-known for its excellent segmentation capabilities, which make it
effective in predicting thermal ablation lesions; however, it does not
perform as effectively in predicting the thermal distribution.
10 
4.6. Evaluation of inference time

In this section, we compare the inference times across the three
different network architectures to assess their suitability for real-time
inferences. A significant decrease in time required to draw inferences
is crucial for enabling precise, real-time prediction of incidents in both
engineering and biomedical fields (Meng et al., 2024; Finkeldey et al.,
2020; Liu et al., 2024; Wu et al., 2021). As listed in Table 6, the
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Table 6
Comparisons of inference times across different network architectures.

Networks Inference time (ms)

EDCNN 2.7579
U-Net 2.8312
Attention U-Net 3.6442

inference times for the EDCNN, U-Net, and Attention U-Net were ap-
proximately 2.7579, 2.8312, and 3.6442 ms, respectively. This implies
that the prediction of thermal effects (i.e., ablation lesion zone and
temperature distribution) during RFA treatment can be completed in
less than 10 ms with two inputs: a segmented breast tumor MR image
and the placement of the ablation tip setup. The inference time was
measured using a parallel GPU computation on a desktop computer
(AMD Ryzen 9 5950x 12-core processor 3.40 GHz and NVIDIA GeForce
RTX 3090).

5. Discussion

Digital twin, which is a representation of real-world objects, pro-
cesses, and systems in a virtual space, is at the forefront of the era of
digital transformation. In the healthcare domain, it has the potential to
precisely monitor treatment processes and analyze patient conditions,
paving the way for personalized therapies and diagnostics. One crucial
aspect in realizing this technology is the real-time simulation of the
physical phenomena occurring in the target object. Recent efforts have
integrated mathematical analysis models with artificial intelligence
(AI) techniques, resulting in the creation of AI models capable of the
real-time inference of physical phenomena. In this paper, we propose
physics-guided network models that can provide users with real-time
feedback information on the thermal effects that occur during RFA. The
developed model achieved 96.3% accuracy in predicting the ablation
lesion volume in terms of the Dice score and showed a temperature
distribution difference of 0.5624 in terms of RMSE evaluation. Even in
the evaluation using unforeseen data, the network demonstrated robust
performance, with a 93.6% Dice score for ablation lesion prediction and
an RMSE of 0.7078 for temperature prediction. Furthermore, all net-
work models exhibited real-time capabilities, inferring thermal effects
within 10 ms (over 100 frames per second) using only standard home
desktop computer specifications.

To assess the robustness of the networks for new patients, we
conducted an accuracy evaluation using unforeseen data not involved
in training the network model. As presented in Tables 3 and 5, the
results indicate a minor decline in performance compared to the re-
sults from the data previously seen during training. Nevertheless, the
networks still achieved high accuracy levels, highlighting the generality
of PhysRFANet and its capacity to adapt accurately to new breast tumor
MR image data from new patients.

Although the use of ex vivo bovine liver tissue in the experiments
alidated our models, it is crucial to acknowledge its deficiency in repli-
ating the dynamic physiological conditions inherent to living human
atients (Kim et al., 2011). The differences between bovine and human
rgans, such as spatial relationships with other heat-sensitive organs,
issue cooling by neighboring blood vessels (Künzli et al., 2011), blood
low dynamics (Patterson et al., 1998), immune responses (Mauda-
avakuk et al., 2022), and other metabolic activities, may have affected

he generalizability of our results to human clinical scenarios. Despite
his limitation, the use of ex vivo bovine liver tissue offers a practical

approach for preliminary investigations, laying the groundwork for
further studies in more complex and clinically relevant settings.

It is also noteworthy that without the integration of detailed blood
vessel information through high-resolution magnetic resonance an-
giography (MRA), predictions remain inaccurate because they rely on
assumptions about blood flow that may not reflect actual physiological

conditions. In this scenario, our modified Pennes bioheat model offers a

11 
strong alternative to models that incorrectly account for heat loss owing
to inaccurate blood flow assumptions, such as one-way flow.

This study did not consider RFA needle deflection or displace-
ment (de Jong et al., 2018; Pérez et al., 2022) or deformation of
the patient’s breast tissue (Danch-Wierzchowska et al., 2020) during
RFA tip insertion. Neglecting these aspects could potentially affect the
accuracy of the RFA procedure because tissue displacement resulting
from changes in breast shape and needle deflection during tip insertion
must be considered for precise treatment planning. Addressing these
factors is a promising avenue for future research.

To effectively utilize the developed models in clinical practice, they
must be integrated with a technique for the precise placement of RFA
electrodes. For example, fusion imaging technology, specifically the
integration of CT/MR-US fusion imaging, has significantly improved
the accuracy of RFA (McWilliams et al., 2010; Makino et al., 2016;
Wood et al., 2010; Kruecker et al., 2011). Integrated approach using
PhysRFANet and fusion imaging technology can lead to more targeted
and effective application of RFA, thereby minimizing procedural errors
and optimizing therapeutic outcomes.

6. Conclusion

This study introduced a novel approach that leverages physics-
guided network models to provide real-time feedback on thermal effects
during RFA treatment. Using MR images from 13 breast cancer patients,
our approach has successfully demonstrated its ability to simulate
the multi-biophysics phenomena involved in RFA procedures. By in-
corporating temperature-dependent electrical conductivity, we have
improved the realism of the simulations compared to the original
Pennes bioheat model. Although the current model is primarily based
on geometric differences in segmented tumors and does not incorpo-
rate other patient-specific in vivo measurements, such as thermal and
electrical conductivity or tissue density, our workflow is designed to
be adaptable for future integration with such measurements. As we
continue to expand our research, future work will involve conducting
various in vivo experiments to further refine the model, ensuring it accu-
rately captures the complex and individualized biophysical interactions
during RFA, ultimately supporting personalized treatment planning and
optimization in clinical settings. Moreover, the proposed deep learning-
based model holds great promise not only in advancing the standards
of medical interventions and ensuring the safety and efficacy of RFA
treatment, but also in broadening the scope of RFA applications.
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