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A B S T R A C T

Background and objective: Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic
technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired
brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but
acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the
estimated location and shape of the focus, the computation has not reached sufficient speed for real-time
inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we
propose multi-modal networks capable of generating intracranial pressure map in real-time.
Methods: The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and
transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps
were computed using the k-space method. We developed network models based on convolutional neural
networks and the Swin Transformer, featuring a multi-modal encoder and a decoder.
Results: Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both
computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved
the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks
was under 0.02 s, indicating the feasibility for real-time simulation.
Conclusions: The results indicate that our networks can effectively and precisely perform real-time simulation
of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of
treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies.
1. Introduction

Transcranial focused ultrasound (tFUS) is a groundbreaking thera-
peutic technique, offering a non-invasive approach to precisely deliver
concentrated acoustic energy to specific localized brain regions [1–6].
tFUS has gained further attention in the clinical research field as a
new modality of non-invasive brain stimulation (NIBS) [7–11]. This
technology has opened new avenues for non-pharmacological and non-
invasive treatments of neurological disorders [12] and neuropsychiatric
conditions [13].

The primary challenge associated with tFUS lies in ensuring the
accurate delivery of acoustic focus to the intended brain region while
the cranium distorts and obstructs the acoustic waves [14]. The wave
propagation characteristics are intricately linked to the acoustic prop-
erties of the medium through which it travels. Since the anatomical
structure of the skull is highly heterogeneous, acoustic waves are
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distorted and attenuated inevitably as they pass through the skull. This
presents a significant challenge in accurately determining the actual
location of the focal region during tFUS treatment [15–18].

To ensure precise sonication, it is crucial to monitor the location
and intensity of the acoustic focus throughout the tFUS procedures. To
address this need, several tFUS guidance techniques have been devel-
oped and adapted for clinical settings. For example, magnetic resonance
(MR)-guided FUS (MRgFUS) [18], is a widely employed method that
utilizes MR thermal imaging technique to monitor the temperature
elevation at the focal region. However, its application to low-intensity
FUS (LIFU) treatment is not possible due to the non-thermal nature of
LIFU. Thus, recent LIFU studies have incorporated a neuronavigation
system that geometrically tracks the position of the tFUS transducer in
real-time and overlays it onto pre-acquired medical images [19–22].
https://doi.org/10.1016/j.cmpb.2024.108458
Received 17 July 2024; Received in revised form 22 September 2024; Accepted 7 O
vailable online 15 October 2024 
169-2607/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a
ctober 2024

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/cmpb
https://www.sciencedirect.com/journal/computer-methods-and-programs-in-biomedicine
https://www.sciencedirect.com/journal/computer-methods-and-programs-in-biomedicine
mailto:yoonkh@yonsei.ac.kr
https://doi.org/10.1016/j.cmpb.2024.108458
https://doi.org/10.1016/j.cmpb.2024.108458
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2024.108458&domain=pdf
http://creativecommons.org/licenses/by/4.0/


M. Seo et al. Computer Methods and Programs in Biomedicine 257 (2024) 108458 
Fig. 1. The example images represent CT, MR, and co-registered CT and MR images
from subject 1. During data generation, the sagittal plane was considered as the yz
plane, the coronal plane as the xz plane, and the axial plane as the xy plane.

However, the approaches do not account for the changes in the focal
location and intensity that accompany the skull transmission.

Computational methods can provide precise simulation outputs by
numerically solving the wave equations with inclusion of the skull
structure and material properties [23]. Despite their promising utility,
high computational cost restricts practical and wide-spread use in clin-
ical settings. To address these limitations, there is a growing demand
for advanced simulation techniques capable of providing real-time
feedback information while preserving the accuracy [16,24].

Recently, deep learning (DL) methods are gaining increasing at-
tention in the medical domain for various applications including di-
agnosis [25], medical image analysis [26], prognosis [27], drug dis-
covery [28], and treatment planning [29]. Furthermore, recent stud-
ies have applied DL methods to tFUS treatments, particularly pro-
viding real-time navigational information for the transducer place-
ment [30] and generating high-resolution tFUS simulation results from
low-resolution inputs [31,32]. The fundamental advantage of employ-
ing DL methods lies in their data-driven nature: networks automatically
learn essential features from the given dataset [33]. This approach
enables the network to identify complex structure within the data and
uncover the meaningful patterns that are not immediately apparent,
thereby enhancing its predictive and analytical effectiveness.

Another benefit of DL is its rapid inference capability, which can be
accelerated using GPUs [34]. A representative example is autonomous
driving, where it processes and interprets data from the vehicle’s sen-
sors in real-time [35]. Building on these advantages, there have been
attempts in the medical field to develop real-time diagnostic systems
using DL methods [36–38].

Traditional DL methods utilize a single modality dataset, leading
to the development of specialized models that are tailored for specific
tasks. However, this approach limits the capability of a network that in-
terprets and integrates the complex information presented in real-world
scenarios. To address this limitation, recent studies have introduced
multi-modal learning methodologies that allow for a single network to
handle various data types [39–41].

This approach proves especially beneficial in the medical domain,
where the domain knowledge is crucial and often suffers from data
2 
scarcity. It enables networks to effectively learn diverse information,
contributing to more precise outcomes in medical applications [42].
In addition, recent advancements in wearable devices, data acquisition
methods, and omics technology have expanded the data modalities
beyond traditional medical data [42], enabling the utilization of diverse
array of datasets. Moreover, a single-domain medical data (e.g., medi-
cal images) is organically linked with other clinical features (e.g., lab
results) due to its nature, making it more advantageous for processing
multi-modal data [43].

Studies are being conducted to utilize multi-modal learning across
different applications within the medical domain. Several methods have
been proposed to enhance the processing of visual representations of
medical images using paired medical image–text data, with applications
ranging from classification and image retrieval tasks to the automatic
generation of medical imaging reports [43,44]. Processing medical
image data from different modalities can also serve as an example of
multi-modal learning. For instance, several methods for medical image
fusion based on convolutional neural network (CNN), generative adver-
sarial network (GAN), and Transformer have been proposed in [45–47].
ECG signal data, primarily utilized for detecting abnormalities in the
cardiovascular system, leverages multi-modal fusion technology by
integrating with other datasets such as echocardiography to improve
disease diagnosis performance [48,49]. Additionally, integration of
multi-omics data, including genomics, epigenomics, and proteomics,
enhances outcomes in various medical analysis, such as in survival rate
prediction associated with cancers [50,51].

Inspired by the exceptional performance of multi-modality learning
in medical applications, this study presents multi-modal deep neural
networks that enable real-time monitoring of the intracranial acoustic
pressure map during tFUS treatment. We employed a dataset obtained
from 11 healthy human subjects, which consisted of free-field pressure
map, medical images, and transducer placements, all of which were
used as inputs to the network. The intracranial pressure field acquired
from physics simulations using the k-space method was set as the target
data. Then, we developed a set of networks, each consisting of (1) a
multi-modal feature encoder that extracts and integrates features across
various modalities and (2) a decoder that restores the spatial dimen-
sions of the encoded representations. The accuracy of the networks
was assessed using foreseen data from 8 subjects, which was used for
network training, and subsequently evaluated on unforeseen data from
an additional 3 subjects. Our contributions are summarized as follows:

• We have achieved real-time prediction of intracranial pressure
field with high accuracy.

• We have developed sets of networks to effectively process multi-
modal information.

• We have achieved higher performance by using multi-modal data
for tFUS simulation compared to relying on a single modality.

• We have demonstrated the feasibility of predicting intracranial
pressure maps using only MR images, eliminating the need for
CT that requires exposure to ionizing radiations.

2. Data generation

In this section, we provide the outline of the multi-modal data acqui-
sition methods for network training and evaluation: (1) the acquisition
methods for CT and MR images, (2) numerical modeling process for
the skull structure, (3) analysis of skull structures among participants,
(4) methods for defining the position of the transducer, and (5) nu-
merical simulation method to obtain free-field and intracranial acoustic
pressure maps.
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2.1. Acquisition of CT and MR images

3D CT (Aquilion One, Toshiba, Japan) and MR (Skyra, Siemens, Ger-
many) images of skulls from 11 participants were acquired under the
approval of the Institutional Review Board (IRB; Incheon St.Mary’s Hos-
pital, The Catholic University of Korea). To attain the spatial alignment
of each imaging modality, four fiducial markers (Pinpoint, Beekley
Medical, Bristol, CT) were attached onto the subject’s head. CT images
were scanned with an isovoxel size of 0.5 × 0.5 × 0.5 mm3 and cropped
above the frontal sinus, covering field-of-view of 225 × 225 × 150 mm3.
T1-weighted MR images (3D GRAPPA sequence, acceleration factor =
2, TR/TE = 1900/2.46 ms, Flip angle = 9◦) were scanned with an
isovoxel size of 1.0 × 1.0 × 1.0 mm3 covering field-of-view of 240 × 180 ×
240 mm3, and then resampled to an isovoxel size of 0.5 × 0.5 × 0.5 mm3

with the Lanczos interpolation to match the size of the CT images [52].
The obtained CT and MR images of each subject were co-registered
using a point-based rigid body registration method [53]. The example
of medical images used for data generation is shown in Fig. 1.

2.2. Skull modeling

For the numerical simulation of ultrasound propagation, geometric
and material properties of the skull were modeled using Hounsfield
units (HU) 𝜙𝑖,𝑗 ,𝑘 of each CT image, where 𝑖, 𝑗 , 𝑘 represent the voxel
indices of 𝑥-, 𝑦-, and 𝑧-direction, respectively. The simulation domains
were classified by thresholding each voxel with HU values, where
regions with 𝜙𝑖,𝑗 ,𝑘 ≤ 0 were defined as water, those with 0 < 𝜙𝑖,𝑗 ,𝑘 <
1000 as trabecular bone, and regions with 1000 ≤ 𝜙𝑖,𝑗 ,𝑘 as cortical bone.
Ultrasound velocity (𝑐𝑖,𝑗 ,𝑘), density (𝜌𝑖,𝑗 ,𝑘), and attenuation coefficient
(𝑎𝑖,𝑗 ,𝑘) of the skull were modeled as [30,54,55]:

𝑐𝑖,𝑗 ,𝑘 =

⎧

⎪

⎨

⎪

⎩

1500 m/s, for 𝜙𝑖,𝑗 ,𝑘 ≤ 0,
2140 m/s, for 0 < 𝜙𝑖,𝑗 ,𝑘 < 1000,
2384 m/s, for 1000 ≤ 𝜙𝑖,𝑗 ,𝑘,

𝜌𝑖,𝑗 ,𝑘 =

⎧

⎪

⎨

⎪

⎩

1000 kg/m3, for 𝜙𝑖,𝑗 ,𝑘 ≤ 0,
1000 + 1.19𝜙𝑖,𝑗 ,𝑘 kg/m3, for 0 < 𝜙𝑖,𝑗 ,𝑘 < 1000,
2190 kg/m3, for 1000 ≤ 𝜙𝑖,𝑗 ,𝑘,

𝑎𝑖,𝑗 ,𝑘 = 33 Np/m, for 0 < 𝜙𝑖,𝑗 ,𝑘.

(1)

2.3. Analysis of skull structure

To examine the variations in skull structure between patients, we
conducted a detailed analysis of the modeled skull structures from 11
participants described in Section 2.2, which are denoted as S1–S11.
This analysis includes the number of segmented voxels for trabecular
and cortical bone, the ratio of trabecular to cortical bone, and the mean
and standard deviation of the trabecular bone density. The comparative
results of skull structure analysis are presented in Table 1.

2.4. Transducer modeling

Assuming the LIFU treatment condition, we modeled a single-
element partial hemisphere-shaped transducer with an operating fre-
quency of 250 kHz, featuring a diameter, radius of curvature, and focal
length set to 75 mm, 83 mm, and 83 mm, respectively.

Here, we denote the location and orientation of the transducer as
𝐓𝑐 = [𝑇𝑥, 𝑇𝑦, 𝑇𝑧]𝑇 and 𝐧𝑡 = [𝑛𝑥, 𝑛𝑦, 𝑛𝑧]𝑇 , where 𝐓𝑐 is the vertex of
the transducer and 𝐧𝑡 indicates its normal direction. To define the
transducer placement, we sequentially define 𝐂ROI, −𝐬𝑡, 𝐧𝑡, and 𝐓𝑐 .
𝐂ROI, the target area for the focal region, was identified manually
by analyzing registered CT-MR images, targeting the deep brain area.
Normal vectors of the skull surface node −𝐬𝑡 were obtained by applying
MATLAB built-in functions ‘‘triangulation’’ and ‘‘vertexNormal’’ on the
skull surface [56]. The vector 𝐧 was derived by connecting the 𝐂 to
𝑡 ROI

3 
Table 1
Comparison of measurements of skull structures. #TB denotes the number of voxels
segmented as trabecular bone, #CB denotes the number of voxels segmented as cortical
bone, and Mean(TB) denotes the mean density of the trabecular bone.

Skull #TB #CB #TB/#CB Mean (TB)

S1 838 221 906 775 0.9244 1516 ± 166
S2 809 852 1 206 623 0.6712 1772 ± 264
S3 929 632 903 984 1.0284 1729 ± 271
S4 920 120 901 503 1.0207 1659 ± 227
S5 992 816 1 176 011 0.8442 1789 ± 254
S6 947 878 1 367 146 0.6933 1746 ± 257
S7 441 831 1 018 810 0.4337 1715 ± 284
S8 945 858 1 480 966 0.6387 1816 ± 274
S9 894 055 1 077 108 0.8301 1775 ± 255
S10 736 964 1 694 643 0.4349 1737 ± 266
S11 1 140 307 1 294 106 0.8812 1832 ± 256

Fig. 2. Illustration of transducer placements modeling. 𝐓𝑐 is the vertex of the partial
hemisphere-shaped transducer, 𝐧𝑡 is the normal direction of the transducer, −𝐬𝑡 is the
normal vector of the skull surface pointing outward, and 𝐂ROI is the target point for
the transducer.

the skull surface node, and 𝐓𝑐 was calculated by extending 𝐧𝑡 until it
reaches the condition. The illustration of the defined vectors is shown
in Fig. 2.

A total of 400 transducer placements were randomly selected within
each subject’s skull with two constraints: (1) ensuring that the distance
between 𝐓𝑐 and each corresponding region of interest (ROI) center 𝐂ROI
was 83 mm, and (2) keeping the angle between the normal vector of
the skull surface 𝐬𝑡 and 𝐧𝑡 was under 10 degrees to achieve optimal
focusing.

2.5. k-space method

The intracranial acoustic pressure map corresponding to each trans-
ducer position was obtained using the k-wave MATLAB toolbox [57],
which is based on the k-space method [58,59]. The governing equations
for ultrasound propagation simulation are stated below:
𝜕𝐮
𝜕 𝑡 = − 1

𝜌0
∇𝑝,

𝜕 𝜌
𝜕 𝑡 = −𝜌0∇ ⋅ 𝐮 − 𝐮 ⋅ ∇𝜌0,

𝑝 = 𝑐20
(

𝜌 + 𝐝 ⋅ ∇𝜌0 − 𝐿𝜌
)

,

(2)

where 𝐮 is the acoustic particle velocity, 𝑝 is the acoustic pressure, 𝜌
is the acoustic density, 𝜌0 is the ambient density, 𝑐0 is the isentropic
sound speed, 𝐝 is the acoustic particle displacement, and the operator
𝐿 is a linear integro-differential operator that accounts for acoustic
absorption and dispersion that follows a frequency power law [60].
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Fig. 3. Construction of the dataset. Skull properties and transducer placements defined
using medical images, are utilized to generate pressure map data. Medical images (CT
and MR) are cropped at the point where the transducer beamline intersects with the
skull surface, acting as an additional input modality. Transducer placement vectors are
used as input data that conveys transducer location information to the network.

To ensure the stability and convergence of the numerical simula-
tion, we selected an appropriate time step size that conforms to the
Courant–Friedrichs–Lewy (CFL) criterion as follows [58,61]:

𝛥𝑡 = 𝐶CFL
𝛥𝑥
𝑐max

(3)

where 𝑐max is the maximum speed of sound in the medium with 𝐶CFL =
0.3. All simulations were performed with the simulation time of 120 μs,
and the ultrasound signal emitting from the source was modeled as a
tone burst signal with a cycle count of 5.

2.6. Construction of dataset

We constructed a dataset consisting of three different modalities:
(1) acoustic pressure maps representing the physical information of
ultrasound propagation, (2) medical images conveying geometric in-
formation about the biological structure, and (3) transducer location
vectors which indicate the position and orientation of the transducer.
Fig. 3 is a schematic diagram of the dataset generation process.

2.6.1. Acoustic pressure maps
In this study, two types of pressure maps were computed with the

k-space method for network training: the free-field pressure map and
the intracranial pressure map. The free-field pressure map served as
the network input, with the intracranial pressure map as the target
‘ground-truth’. Here, the free-field pressure map refers to the pressure
map generated when ultrasound propagates through a homogeneous
medium (in our case, water), while the intracranial pressure map refers
to the pressure map generated when ultrasound propagates through the
skull.

Using the transducer locations and the skull geometry obtained
previously, corresponding intracranial pressure maps were computed
via k-space method and cropped to a field-of-view of 56 × 56 × 56 mm3

centered at 𝐂ROI, resulting in an image matrix of 112 × 112 × 112.
The free-field pressure map can be calculated by ignoring the mod-

eled skull geometry in the simulation domain and assuming all acoustic
properties as water. To generate free-field pressure map immediately
4 
during the actual clinical applications, we used a pre-calculated ref-
erence free-field pressure map with the 𝐧𝑡 set to [1, 0, 0]. By rotating
the reference pressure map with the intrinsic rotation matrix according
to the 𝐧𝑡 which was used for intracranial simulation, we obtained the
corresponding rotated free-field pressure maps.

To enhance the efficiency of network training, the free-field pressure
map was normalized to a range between 0 to 1 using Min–Max Scaling.
The intracranial pressure map was also normalized with the same
min–max range as the free-field pressure map, thereby representing
the transmission rate of the peak pressure considering the attenuation
caused by the skull.

2.6.2. Medical images
To enable the network to effectively capture the geometric infor-

mation of the skull structure, an appropriate medical image modality
should be provided. To address this additional need, we utilized CT
and MR images as the network input. The registered medical im-
ages were cropped to an image matrix of 112 × 112 × 112 at the
intersection of the transducer beamline with the skull. To highlight
essential information in each imaging modality, CT and MR images
were thresholded to have intensity values in the ranges of (0,2000) and
(0,1000), respectively. Values outside these ranges were assigned to the
nearest minimum or maximum value within the range.

2.6.3. Transducer placements
To provide additional information about the transducer placement,

we utilized the transducer’s location and orientation vector as a net-
work input. The transducer placement vector (𝐯) was obtained by
concatenating 𝐓𝑐 and 𝐧𝑡 along the row, resulting a dimension of 1 × 6.
For 𝐓𝑐 , its values in 𝑥−, 𝑦−, 𝑧− directions were normalized through
Min–Max Scaling with the simulation domain’s field-of-view: an image
matrix of 450 × 450 × 300.

2.6.4. Splitting data for training and evaluation
We obtained datasets from total of 11 skulls, each with 400 data

points. Data from 8 skulls (S2, S4, S5, S7–S11) of these were used for
training, with 320 data points per skull for training and the remaining
80 data points for validation on foreseen data. The remaining 3 skulls
(S1, S3, S6) provided 1200 data points used to validate network per-
formance on unforeseen data. Detailed descriptions of the foreseen and
unforeseen sets are provided in Section 4.4.

3. Multi-modal networks for tFUS simulation

This section introduces the architecture of our network. Since the
input data comprises information from various modalities, each of
the features should be processed and integrated. To handle this task,
we developed three network structures specifically for multi-modal
data processing based on convolutional neural network (CNN) and
Swin-transformer.

3.1. CNN-based networks

Here, we propose CNN-based network architectures consisting of an
encoder for fusing multi-modal feature and a decoder for generating
intracranial pressure maps. The entire structure of CNN networks is
illustrated in Fig. 4.
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Fig. 4. Architectures of CNN-based networks. The basic configuration of the two networks is the same, but their structures diverge based on the presence of skip connections.
Note that the final skip connection for medical image features was excluded in the U-Net structure.
3.1.1. CNN-based multi-modal feature encoder and deep feature extraction
layers

In the encoder, features from free-field pressure maps and medical
images (CT or MR) were respectively extracted using serially-connected
four convolution blocks. Each convolution block comprises a 3D con-
volution with a kernel size of 4 × 4 × 4, stride of 2 and zero padding
of 1, which reduces the spatial dimension of the data by half. Group
normalization and GELU is applied after convolution operation, and
dropout with 𝑝 = 0.1 was applied to prevent overfitting. To enhance
training efficiency, instance normalization is applied to the pressure
map and medical image before feeding them into the network. The size
of the final output becomes 256 × 7 × 7 × 7.

In the case of transducer placement vectors, the Fourier feature
mapping [62] was applied before passing into the network to effectively
capture the spatial information :
𝛾(𝐯) = [cos(2𝜋𝐁𝐯), sin(2𝜋𝐁𝐯)T] (4)

where 𝐁 is a random Gaussian matrix and 𝐯 is the transducer placement
vector.

An MLP layer with GELU activation function is then applied to
provide additional nonlinear mapping and to transform the dimension
to 343 × 1. Output of the layer is then reshaped into 1 × 7 × 7 × 7,
aligning the spatial dimensions with the 3D data.

Multi-head self-attention (MHA) [63] stated below was respectively
applied to each of the processed features to highlight the essential
information :
MultiHead(𝑄, 𝐾 , 𝑉 ) = Concat(head1,… ,headℎ)𝑊 𝑂 ,

head𝑖 = Attention
(

𝑄𝑊 𝑄
𝑖 , 𝐾 𝑊 𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖

)

,

Attention(𝑄, 𝐾 , 𝑉 ) = softmax
(

𝑄𝐾T
√

𝑑

)

𝑉

(5)

where 𝑄 is the query matrix, 𝐾 is the key matrix, 𝑉 is the value matrix,
𝑑 is the dimension of the data, ℎ is the number of attention heads, 𝑖 is
the index of each head, and 𝑊 is the weight matrix.

MHA with ℎ = 4 was applied to the channel direction of free-field
pressure maps and medical images (i.e., CT or MR), while transducer
placements were processed with a single attention head. Computed
MHA values were added to the input feature to enhance feature process-
ing. Features from each modality were merged with an element-wise
5 
sum in the channel direction after self-attention. Note that the infor-
mation regarding the transducer placement is distributed across all
channels, given its single-channel dimension.

After encoding and merging each feature, deep feature extraction
was performed using two convolution blocks with a kernel size of
3 × 3 × 3, a stride of 1 and zero padding of 1, maintaining the spatial
dimension of the merged feature map. Group normalization, GELU
activation function, and dropout with 𝑝 = 0.5 were applied after each
convolution operation. Finally, MHA with ℎ = 4 was applied, and
computed attention values were added to the feature.

3.1.2. CNN-based decoder for generation of intracranial pressure map
The decoder serves to restore the reduced spatial dimensions during

the encoding process. We adopted two different decoder structures:
Autoencoder (AE) and U-Net.

An AE [64] is a network structure that consists of an encoder and de-
coder. The encoder processes and downsamples the feature information
into the latent vector, while the decoder reconstructs and expands the
compressed feature into a representative reconstruction of the original
input data. The decoder of AE was implemented by upsampling the
encoded features in spatial dimensions through trilinear interpolation,
followed by 3D convolution operations with a kernel size of 3 × 3 × 3,
stride of 1, and zero padding of 1.

The key idea of the U-Net [65] is in the use of skip connections,
which allows for direct transfer of high-resolution features extracted by
the encoder to the decoder, preventing the loss of spatial information
in the data. In our implementation, based on the AE structure, features
extracted from encoding blocks were added to the upsampled features,
and the output of each block in deep feature extraction layers was
merged with the output of the previous block. Here, we empirically
excluded the skip connection of medical image features from the first
encoding block to generate higher quality outputs.

3.2. Swin transformer-based networks

In this section, we propose Swin Transformer [66] based network
architecture comprising Swin Transformer encoder and the CNN de-
coder. The core concept of the Swin Transformer encoder is to divide
the input data into patches and compute the relation between patches
using shifted window attention mechanism. To reduce the significant
computational load inherent in the Transformer structure, we adopted
the CNN architecture for the decoder.
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Fig. 5. Illustration of two Swin Transformer blocks. Each of the block shares the same
structure, except for using different attention mechanisms.

3.2.1. Swin transformer-based encoder
The Swin Transformer-based encoder consists of patch processing

blocks and Swin Transformer blocks. For the pressure map and medical
image data, the initial patch partition process divides the whole image
map into 28 × 28 × 28 patches of size 4 × 4 × 4 with 3D convolution.
Subsequently, each patch size was increased to 96 through linear
embedding, and fed into four Swin Transformer blocks.

The odd-numbered Swin Transformer blocks consist of a sequence
of layer normalization, window attention, layer normalization, and an
MLP layer, with each data being merged with a skip connection before
layer normalization. In the even-numbered Swin Transformer block,
shifted window attention was applied instead of window attention,
enabling the computation of attention scores between windows. The
structure of two Swin Transformer blocks is represented in Fig. 5.

After passing through the Swin Transformer blocks, adjacent patches
are merged, reducing the number of patches by half. Subsequently, each
patch was embedded to a size of 192 and passes through another Swin
Transformer block. Following the same process, the dimension of the
data after the final Swin Transformer block became 7 × 7 × 7 × 384. For the
transducer placement vectors, the dimension was expanded to a size of
7 × 7 × 7 × 1 using the same feature encoding process as in CNNs, and
then merged with the encoded 3D data.

3.2.2. Swin transformer-based decoder for pressure map generation
To reduce the computational burden, we adopted the CNN-based

U-Net shaped decoder architecture similar to the CNN decoder block
structure described in 3.1.2, but increased the decoder’s complexity
by performing convolution twice after the interpolation. After passing
the decoder block, the number of patches doubles while the size of
each patch was halved. Skip connections were added between fea-
ture maps from previous encoding blocks and feature maps from cur-
rent decoding blocks in the channel direction. The structure of Swin
Transformer-based U-Net (Swin U-Net) is illustrated in Fig. 6.
6 
Fig. 6. Network architecture of Swin Transformer-based U-Net. The initial patch
partition block employs 3D convolution, while patch merging blocks use MLP layers to
reduce the number of patches. Decoding procedures were performed with interpolation
and 3D convolution to conserve computational resources.

3.3. Optimization and hyperparameter settings

The similarity between the model output and the target data was
computed using the mean-squared error (MSE), aiming to minimize the
following loss function :

 = 1
𝑁

𝑁
∑

𝑖=1
[(𝑝(𝑖)

pred − 𝑝(𝑖)
true)

2] (6)

where 𝑁 is the number of the training data, 𝑝pred is the intracra-
nial pressure map output from the network, 𝑝true is the ground truth
intracranial pressure map, and 𝑖 is the index of the training data.
The implementation and training of the network structure were de-
veloped with Pytorch. Batch size for training processes was set to 8
for CNN-based networks and 4 for the Swin U-Net. The weights of
the convolution layers, MLP layers, and group normalization layers
were initialized to follow a truncated normal distribution with std =
0.02. The weights and biases of layer normalization were initialized to
constant 1 and 0, respectively. The loss function was optimized using
the AdamW optimizer(b1 = 0.5, b2 = 0.999, weight_decay = 0.05). The
training was set for a total of 200 epochs. For the first 100 epochs,
learning rate was set to 0.0002 for the CNN networks and 0.0005 for
the Swin Transformer. For the subsequent 100 epochs, a learning rate
scheduling was applied using the following rule:

𝑙 𝑟 = 1.0 − 𝐦𝐚𝐱(0, 𝐞 − 99)
100

, for 𝐞 ≥ 100 (7)

where 𝐞 is the current training epoch.
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Table 2
The number of parameters and FLOPs of the networks.

Networks num. params FLOPs

CNN AE, CNN U-Net 11,636,522 30,891,114,737
Swin U-Net 38,869,586 78,433,351,409

Table 3
Comparison of performance across three different network architectures.

Networks Dice (%) 𝐷𝑝 (mm) 𝛥𝑝 (%)

CNN AE 87.49 ± 3.30 1.52 ± 1.04 1.69 ± 1.13
CNN U-Net 93.09 ± 2.95 1.36 ± 1.11 0.71 ± 0.59
Swin U-Net 91.26 ± 3.70 1.68 ± 1.38 1.28 ± 1.14

Table 4
Comparison of performance depending on different input modalities for training.

Networks Dice (%) 𝐷𝑝 (mm) 𝛥𝑝 (%)

Pressure map

CNN AE 78.60 ± 10.18 2.68 ± 1.81 4.10 ± 3.34
CNN U-Net 80.46 ± 10.63 2.71 ± 1.94 3.23 ± 2.83
Swin U-Net 83.42 ± 6.66 2.61 ± 1.66 2.88 ± 2.31

Pressure map + CT

CNN AE 87.33 ± 4.05 1.43 ± 0.92 2.73 ± 1.48
CNN U-Net 94.79 ± 2.17 1.22 ± 0.95 0.63 ± 0.55
Swin U-Net 93.13 ± 3.52 1.65 ± 1.26 1.39 ± 1.15

Pressure map + CT + transducer placements

CNN AE 87.49 ± 3.30 1.52 ± 1.04 1.69 ± 1.13
CNN U-Net 93.73 ± 2.40 1.36 ± 1.02 0.71 ± 0.59
Swin U-Net 91.26 ± 3.70 1.68 ± 1.38 1.28 ± 1.14

4. Results

In this section, we assess the performance of our network using three
different evaluation metrics. To assess the robustness of our network,
we also performed evaluations on unforeseen data. All of the data
generation and network training processes were conducted with an
AMD Ryzen 9 5950X 16-Core Processor, 128.0 GB-RAM, and a single
NVIDIA RTX 3090 Ti GPU.

4.1. Evaluation metrics

The primary performance evaluation metric was the degree of sim-
ilarities in intracranial pressure focal volume predicted by the network
model compared to the ground truth. Therefore, we calculated the Dice
score [67] between the full-width at half-maximum (FWHM) region of
the network output and the ground truth. Additionally, we measured
the Euclidean distance between the peak pressure points, denoted by
𝐷𝑝. To compare the error in transmission rates of the acoustic pressure
through the skull, we defined 𝛥𝑝 as the difference in peak pressure
values. The formulations for the evaluation metrics are as follows:

Dice =
2|FWHM(𝑝pred) ∩ FWHM(𝑝true)|
|FWHM(𝑝pred)| + |FWHM(𝑝true)|

,

𝐷𝑝 =

√

√

√

√

3
∑

𝑖=1
|(𝐚𝐫 𝐠𝐦𝐚𝐱𝑥,𝑦,𝑧(𝑝pred) − 𝐚𝐫 𝐠𝐦𝐚𝐱𝑥,𝑦,𝑧(𝑝true))𝑖|2,

𝑝 = |𝐦𝐚𝐱(𝑝pred) −𝐦𝐚𝐱(𝑝true)|

(8)

where 𝑖 is the spatial indices of the pressure map.

4.2. Complexity of the network

Prior to comparing the performance of CNN-based networks and
win U-Net, we evaluated the complexity of each network by calculat-
ng their respective numbers of network parameters and floating point
7 
operations (FLOPs). Only parameters requiring gradient calculations
ere included for the network parameters, and FLOPs were computed

or self-attention, MLP, and convolution operations.
Table 2 shows the number of parameters and FLOPs used in CNN

AE, CNN U-Net, and Swin U-Net. Swin U-Net had approximately three
times more parameters than the CNN-based networks, and its FLOPs
were about 2.6 times higher. Based on these results, we proceed with
the analysis under assumption that Swin U-Net is significantly more
omplex than the CNN-based networks.

4.3. Ablation studies

We conducted ablation studies to evaluate the impacts of different
network structures, number of input modalities, type of input medical
images, and loss functions.

4.3.1. Comparison among CNN-based and Swin-transformer-based net-
orks

We compared the performance of three different network architec-
tures. Table 3 exhibits the comparisons in terms of the accuracy of
generated intracranial pressure maps among CNN AE, CNN U-Net, and
Swin U-Net in terms of Dice, 𝐷𝑝, and 𝛥𝑝. CNN U-Net demonstrated
he best performance. We observed high focal volume conformity of
3.73%, with minimal differences in 𝐷𝑝 and 𝛥𝑝. Swin U-Net showed the
ext highest focal volume conformity and low 𝛥𝑝, however, displayed
he greatest variance in Dice scores and the highest 𝐷𝑝 among all
etworks. CNN AE showed the lowest focal volume conformity and the
ighest 𝛥𝑝.

4.3.2. Comparison between using single modality and multiple modalities
The objective of this section is to examine how the input modalities

ffect the performance of the network models. Table 4 shows the mean
and standard deviation values of evaluation metrics depending on the
number of input modalities used in the network. All network structures
using a single modality have exhibited the worst performance: the
lowest mean Dice score and the highest standard deviation. The mean
distance and peak pressure ratio was also the highest. Based on Dice
score and 𝛥𝑝, the performance was best in the order of Swin U-Net, CNN
U-Net, and then CNN AE, while 𝐷𝑝 showed no significant difference
among all networks. When CT image was added as an input modality,
significant performance improvement was seen across all network ar-
chitectures. However, when the transducer input vector was used as an
additional input modality, the Dice score improved for CNN AE, but
the performance declined slightly in CNN U-Net and Swin U-Net.

4.3.3. Comparison between different medical image modalities
Here we conducted comparative experiments to determine if the

etwork can still effectively extract skull features and maintain its
performance when using MR images instead of CT images. Table 5
shows the mean and standard deviation values of evaluation metrics
when using CT or MR images as network inputs. The use of MR image
data displayed similar performance compared to that achieved with CT
image modality. In particular, CNN AE showed higher Dice score, while
CNN U-Net and Swin U-Net exhibited a slight decline in performance.
For 𝐷𝑝, a slight decrease was shown in CNN AE, with no significant
changes observed in the other networks. For 𝛥𝑝, a slight increase was
noted in both CNN AE and CNN U-Net, while Swin U-Net showed a

slight decrease.
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Table 5
Comparison of performance depending on different medical image modality for training

Networks Dice (%) 𝐷𝑝 (mm) 𝛥𝑝 (%)

CT

CNN AE 87.49 ± 3.30 1.52 ± 1.04 1.69 ± 1.13
CNN U-Net 93.73 ± 2.40 1.36 ± 1.02 0.71 ± 0.59
Swin U-Net 92.10 ± 3.39 1.70 ± 1.32 1.28 ± 1.14

MRI

CNN AE 89.57 ± 3.33 1.40 ± 0.96 1.87 ± 1.05
CNN U-Net 93.09 ± 2.95 1.36 ± 1.11 0.75 ± 0.67
Swin U-Net 91.26 ± 3.70 1.68 ± 1.38 1.25 ± 1.18

Table 6
Comparison of performance using different loss functions for network optimization.

Loss Dice (%) 𝐷𝑝 (mm) 𝛥𝑝 (%)

MAE 93.95 ± 2.45 1.36 ± 1.05 0.73 ± 0.67
MSE 93.73 ± 2.40 1.36 ± 1.02 0.71 ± 0.59
SSIM 93.74 ± 2.58 1.37 ± 1.12 0.94 ± 0.79

Table 7
Comparison of performance using foreseen and unforeseen data.

Networks Dice (%) 𝐷𝑝 (mm) 𝛥𝑝 (%)

Foreseen with CT

CNN AE 87.49 ± 3.30 1.52 ± 1.04 1.69 ± 1.13
CNN U-Net 93.73 ± 2.40 1.36 ± 1.02 0.71 ± 0.59
Swin U-Net 92.10 ± 3.39 1.70 ± 1.32 1.28 ± 1.14

Unforeseen with CT

CNN AE 86.00 ± 3.48 1.62 ± 1.00 4.44 ± 2.11
CNN U-Net 88.64 ± 3.71 1.90 ± 1.29 5.29 ± 2.41
Swin U-Net 84.33 ± 4.63 2.18 ± 1.60 6.66 ± 3.11

Foreseen with MRI

CNN AE 89.57 ± 3.33 1.40 ± 0.96 1.87 ± 1.05
CNN U-Net 93.09 ± 2.95 1.36 ± 1.11 0.75 ± 0.67
Swin U-Net 91.26 ± 3.70 1.68 ± 1.38 1.25 ± 1.18

Unforeseen with MRI

CNN AE 78.01 ± 7.68 2.31 ± 1.39 5.99 ± 3.51
CNN U-Net 79.48 ± 7.12 2.83 ± 1.78 6.02 ± 3.55
Swin U-Net 75.71 ± 8.04 3.51 ± 2.10 4.83 ± 3.29

4.3.4. Comparison between different loss functions
Since our objective involves generating 3D images, we compared

the performance of various loss functions commonly used in image
processing [68], including mean absolute error (MAE), mean squared
error (MSE), and structural similarity index measure (SSIM). Experi-
ments were conducted based on a CNN U-Net using CT as an input
medical image modality. Table 6 shows the mean and standard devi-
ation values of evaluation metrics when using MAE, MSE, and SSIM
as loss functions during network training. Despite employing different
loss functions, there were no significant differences in the results.
However, SSIM required additional computations, doubling the training
time compared to MAE and MSE. The mean results were similar when
using MAE and MSE, but the variance slightly increased when using the
MAE. Therefore, we selected MSE as the loss function for the network
training.

4.4. Evaluation with foreseen/unforeseen data

Foreseen data refers to the skull data that was included in the
training process, while unforeseen data denotes skull data that was not
used for training. To assess the robustness of our proposed network for
new subject’s data, we here presented performance evaluation using
unforeseen dataset.
8 
Fig. 7. Box plot of Dice scores for each network architecture and foreseen/unforeseen
test data conditions. The horizontal line and circle in boxes respectively represent the
median and mean values, while the box indicates the interquartile range (IQR: Spanning
Q1 to Q3). The whiskers denote the lower (Q1-1.5IQR) and upper (Q3+1.5IQR) fences.

Table 8
Comparison of performance between transfer learning network and the network trained
with single medical image modality (MR) on unforeseen data.

Modality Dice (%) 𝐷𝑝 (mm) 𝛥𝑝 (%)

MR 79.48 ± 7.12 2.83 ± 1.78 6.02 ± 3.55
CT⇒MR 82.60 ± 5.83 2.27 ± 1.42 2.34 ± 1.80

Table 7 and Fig. 7 respectively shows the mean/standard deviation
values of evaluation metrics and the box plots of Dice score when eval-
uated with foreseen and unforeseen test data. All network architectures
experienced performance declines with unforeseen data. In the case
of using CT images, the CNN AE proved most robust to variations in
input data, though it had the drawback of low average performance.
Performance of CNN U-Net with unforeseen data decreased, yet it still
recorded a high Dice score of 88.64%. Swin Transformer recorded
the lowest score with the most significant performance degradation.
When using MR images as an input modality, all networks showed a
significant drop in performance for unforeseen data. This performance
decline was particularly pronounced in the Dice score and 𝛥𝑝. Fig. 8
illustrates exemplar intracranial pressure maps and the corresponding
FWHM regions in the central yz-, xz-, xy-planes of the target data and
those generated by the proposed network model.

4.5. Using transfer learning to enhance unforeseen score

Based on the results in Section 4.4, we found that using MR images
as the input modality leads to a performance drop on unforeseen data.
In contrast, using CT images as the input modality significantly reduces
the performance decline compared to the use of MR images. Therefore,
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Fig. 8. An example of target and generated pressure maps. Columns 3 to 5 in the table display three sectional views of target and network-generated intracranial pressure maps,
while columns 6 to 8 show overlap of their FWHM regions with the target. In columns 6 to 8, the green-colored region represents the prediction’s FWHM, and the black-colored
edge indicates the overlap between the two.
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Fig. 9. Box plot of Dice scores for unforeseen subject in the MR-trained network
(pink-colored plot) and the CT-MR transfer learning network (green-colored plot). The
horizontal line and circle in boxes respectively represent the median and mean values,
while the box indicates the interquartile range (IQR: Spanning Q1 to Q3). The whiskers
denote the lower (Q1-1.5IQR) and upper (Q3+1.5IQR) fences.

Table 9
Comparison of simulation time for generating intracranial pressure map.

Methods Time (s/data)

Conventional method 308.033
CNN AE 0.00227
CNN U-Net 0.00230
Swin U-Net 0.0232

we were motivated to test how the network trained with both CT
and MR images (as the input modality) performs. Experiments were
conducted based on the CNN U-Net structure, which showed the best
performance on unforeseen MR data. We conducted the additional
training using the same initial learning rate, learning rate scheduler,
and epochs as the initial training.

Table 8 and Fig. 9 respectively show the mean/standard deviation
values of evaluation metrics and the box plots of Dice score for the MR-
trained network and the CT-MR transfer learning network. With respect
to unforeseen MR data, we observed improved performance when the
model trained with CT images was further trained with MR images as
the input.

4.6. Evaluation of inference time

To verify the feasibility of real-time data generation, we measured
the inference time of proposed networks. Based on the hardware spec-
ifications mentioned in Section 4, we averaged the time taken to
generate a single pressure map from the inference process of 1200
unforeseen data samples. We also compared the obtained inference
time with the conventional simulation time of the k-space method.
10 
Table 9 shows the time each network takes to generate intracranial
pressure map. CNN AE and CNN U-Net share essentially the same struc-
ture, differing only in the presence or absence of addition operations in
skip connections, which resulted in negligible differences in inference
time. In contrast, the Swin U-Net required a larger number of param-
eters for MLP and attention operations, resulting in inference times
approximately 10 times longer than those of CNN-based networks.
Nevertheless, the inference time of approximately 0.02 s suggests the
feasibility of real-time operation. Moreover, compared to the conven-
tional k-space method, our networks achieved over 13,000 times faster
simulation time per data, resulting in significant computational time
savings.

5. Discussion

For smart healthcare system, computer simulations have become
essential tools for analyzing complex medical data and on-site informa-
tion to achieve personalized precision treatment. However, the current
computer simulations are impractical for clinical use due to their
significant computational costs. To address this issue, our study took
advantage of the rapid inference capabilities of deep learning to ana-
lyze complex medical information with various modalities, achieving
real-time simulation of intracranial tFUS propagation. By integrating
information from various modalities such as free-field pressure map,
medical image, and transducer placement data into the network, we
attained highly accurate prediction of intracranial acoustic pressure
maps. Notably, by using transfer learning, we were able to predict
intracranial pressure map with an 82% focal volume conformity using
only MR images, eliminating the need for CT images when using the
network.

We proposed three network structures, CNN AE, CNN U-Net, and
Swin U-Net. Upon evaluating with a foreseen dataset, CNN U-Net
exhibited the best performance across all evaluation metrics. Compar-
ing with CNN AE with the same CNN structure, we found that the
skip connections significantly impacts the network’s ability to generate
accurate intracranial pressure maps. When compared to Swin U-Net,
the slightly lower performance associated with Swin U-Net suggests
that network complexity does not always correlate with performance:
selecting a network structure suitable for the given task is more critical
than the network’s complexity.

To assess the impact of multi-modal data on network performance,
we conducted an ablation study by incrementally increasing the num-
ber of input modalities. We demonstrated that the performance of all
networks improved when CT images were used as an additional input
modality compared to using only the free-field pressure map. Since
the skull structure is the critical factor in forming the intracranial
pressure map, the provision of CT images enables the network to better
understand the skull structure due to their accurate characterization
of the skull macrostructure. The addition of the transducer placement
vector did not significantly impact the performance, suggesting that the
free-field pressure map already conveyed sufficient information about
the transducer placements.

Predictive methods via numerical simulation have been limited by
the obligatory use of CT imaging, as CT can clearly characterize the
structures of hard tissues. However, CT scans can expose patients to
unwanted radiation. Therefore, performing simulation solely with MR
images would reduce the burden of extra radiation exposure while al-
lowing for sufficient numerical modeling. We assessed the performance
when MR data was used as the input medical image in our network,
and found that MR data could achieve comparable accuracy to CT
data. The MR data used in this study is T1-weighted, and we anticipate
that utilizing T2-weighted MR data may further improve performance
through better structural characterization through future investigation.

To demonstrate the robustness of the proposed networks, we con-
ducted validation on an unforeseen dataset to determine whether the
networks can extract generalized features from the skull data not seen
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during training. For CT inputs, while the performance on unforeseen
data slightly dropped compared to foreseen results, it still maintained a
high focal volume conformity of over 88% in CNN U-Net. This indicates
that our proposed network architecture can consistently extract features
from the individual skull structures, based on the given input modalities
to a certain extent.

Conversely, when MR images were used as the input modality, all
networks exhibited a greater decline in performance for unforeseen
data compared to using CT images. This implies that extracting a
consistent and appropriate representation of skull information from
MR images alone is still challenging. This is further evidenced by
subsequent transfer learning experiments, where a network pre-trained
on CT images showed improved performance on unforeseen data after
additional training on MR images. This indicates that the network can
achieve a degree of generalization with MR images when it pre-learns
a clearer representation of the skull structure through CT images.

The limitations of this research include the following aspects. The
irst limitation is that additional training would be required for various
ransducer geometries and fundamental frequencies, as the data used
or this study was generated from a single transducer geometry and
requency. Further research should focus on building datasets that ac-

count for diverse conditions, and optimizing the network accordingly.
The second limitation is that the physical properties of the brain tissue
inside the skull were assumed to be same as those of water, for simplic-
ity. However, more accurate simulation would require considering the
complex biological structures (e.g., white matter, gray matter, and cere-
brospinal fluid) within the skull. Future research should incorporate
simulations that account for intracranial tissue structures, potentially
utilizing the information from the MR images. As the modeling of ul-
trasound propagation becomes more intricate, more advanced network
architectures may be required to reflect this complexity.

6. Conclusion

In conclusion, our study presented multi-modal networks for real-
time simulation of intracranial pressure map during tFUS treatment.
Using dataset from 11 subjects, we demonstrated that our network
can effectively and swiftly predict the physical phenomena occurring
during tFUS therapy. The results present a future potential for ensur-
ing safer and more accurate treatment, which will make significant
progress toward LIFU therapy, where traditional monitoring methods
have been limited. Our future research focus on developing networks
that consider a wider range of transducer geometries and fundamen-
tal frequencies, aiming for broader applicability to diverse real-world
treatment scenarios.
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