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A B S T R A C T   

This study examines the automated creation of spatial visualizations for interior design, emphasizing user 
preferences over precision. Recognizing design as a reflection of personal identity, we utilize domain-specific, 
image-fine-tuned AI models to capture the qualitative aspects of various design styles. In interior architecture, 
design styles are often categorized by shared visual features—like material use, color combinations, and furniture 
arrangement—based on tacit consensus rather than explicit data. These features significantly impact both the 
aesthetic and functional aspects of spaces, influenced by historical, cultural, and personal factors. We advanced 
the field with a text-to-image model that translates descriptive text into visual representations. An extensive 
evaluation of the default model was conducted, generating over 15,000 images across 25 design styles, which 
informed the subsequent integration of detailed design knowledge into the model’s training. The refinement 
process included data preparation, textual alignment with image content, and hyperparameter optimization to 
develop fine-tuned models. Implemented across multiple scenarios, this approach proved successful in combining 
the nuanced models with the default, creating images that align with user-defined styles. This methodology 
serves as a tool for generating spatial visualizations that align with user requirements, providing a range of styles 
that cater to diverse preferences. It highlights the potential of AI in enhancing design visualization and the shift 
towards personalized, user-centric design solutions.   

1. Introduction 

Spatial visualization is vital for interpreting and visually expressing 
the arrangement, colors, materials, lighting, and additional elements 
within an interior space. Traditionally, this visualization process relied 
on hand-drawn sketches and two dimensional (2D) renderings, thus 
limiting the capacity to convey the full depth and detail of interior de
signs. The advent of sophisticated technology and computer-aided 
design tools indicated a significant evolution, enabling designers to 
capture spaces with remarkable precision and detailing every aspect 
from textures and materials to lighting effects. Recent advancements in 
high-performance rendering coupled with the rise of image-generation 
artificial intelligence (image-gen AI) technologies based on large lan
guage models (LLMs) have further revolutionized this field. These 
technologies enable the generation of spatial visualizations that are 
highly detailed and closely mimic the realism of photographs, thus of
fering a new paradigm regarding the conceptualization and 

visualization of interior spaces [50,57,59]. Our study presents a method 
that harnesses the power of image-gen AI to generate spatial visualiza
tions tailored to individual preferences, informed by a diverse array of 
interior design styles. 

The design style’s influence on the aesthetic and functional attributes 
of space is undeniable. It is informed by a complex interplay of cultural, 
regional, historical, and personal influences, affecting everything from 
spatial layout to the selection of materials, color schemes, and the 
arrangement of furniture and décor [35,66,11,12,52]. These styles 
reflect distinct design philosophies and aesthetic values and are deeply 
intertwined with personal identity and lifestyle choices, emphasizing 
the importance of personalization in spatial visualization [21,16]. 
However, individual interpretations of design styles can vary widely, 
leading to the need for a versatile approach that can accommodate a 
broad spectrum of preferences [5]. 

This study introduces a methodology for fine-tuning image-gen AI 
models with keywords that encapsulate specific design styles, enabling 
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the generation of spatial visualizations that reflect diverse personal 
tastes and preferences as shown in Fig. 1. By leveraging this approach, 
we expand the diversity of design styles accessible for spatial visuali
zation, thereby enhancing interior design’s personalization. Moreover, 
this study highlights the potential of image-gen AI in transforming 
design visualization practices, emphasizing the shift toward more user- 
centric design and customization in the field of interior architecture. 

2. Background 

2.1. Spatial design visualization Automation 

The evolution of technology is changing how spaces are conceived 
and realized in the field of interior architecture. One of these changes, 
spatial visualization, an integral component of interior architectural 
design, has undergone significant development over the years. 
Conventionally, designers relied on manual methods, including hand- 
drawn sketches and 2D drawings, to communicate their ideas for inte
rior spaces [53],[13]. However, with the introduction of advanced 
technology and computer-aided tools, achieving increasingly realistic 
and detailed spatial visualization has become possible [33]. 

The integration of advanced software, computer-aided design, and 
three-dimensional (3D) modeling tools has empowered designers to 
create immersive and realistic visualizations of interior spaces [69,62]. 
This evolution has enabled designers to accurately represent the phys
ical layout and intricate details such as lighting, materials, textures, and 
even the interplay of shadows. Thus, stakeholders, including clients and 
project collaborators, can review the proposed design process and 
experience a lifelike representation of the design before the construction 
[4,9]; La, 2014; [30,51,65,71]. Spatial visualization has become a 
fundamental aspect of the interior architecture design process. 

Automation techniques fueled by AI and machine learning have 
further improved the capabilities of spatial visualization [15]. These 
technologies can analyze design elements, user preferences, and his
torical data to generate multiple design options, thereby improving the 
decision-making process [53,72]. Moreover, the evolution of spatial 
visualization has revolutionized the design process and elevated the user 
experience. Thus, clients and end-users can now engage with interactive 
virtual tours, enabling them to navigate through spaces, evaluate design 
choices, and offer feedback [58]. This level of engagement fosters a 
deeper understanding of the design intent and facilitates improved 
communication among stakeholders [14]. 

With technological advancement, we can anticipate the emergence 
of even more sophisticated tools, including real-time rendering, 
augmented reality (AR), and virtual reality (VR) experiences 
[76,49,61,54]. These innovations will further bridge the gap between 
the virtual and physical realms, offering designers and clients a seamless 

and immersive design exploration process [1,39]. From manual sketches 
to immersive virtual experiences, this technology has redefined how 
interior spaces are visualized, communicated, and ultimately realized. 
Thus, with the advancement of automated technologies powered by AI 
and machine learning, spatial visualization will remain integral in 
creating harmonious, functional, and visually captivating indoor envi
ronments [44]. Accordingly, in this study, we use image-gen AI to 
construct an AI model that generates interior space images reflecting 
various interior styles and offer practical examples of its application. 

2.2. Machine learning for spatial Visualization: Applying interior design 
styles 

Machine learning is a transformative technology that has made sig
nificant strides across various domains, revolutionizing how we 
approach complex tasks. Image training is a prominent application of 
machine learning, wherein algorithms are designed to recognize and 
interpret visual data with remarkable accuracy [43]. 

In image training, the use of neural networks has proven a game- 
changer. Inspired by the structure of the human brain, neural net
works are composed of interconnected layers that process and extract 
features from data [40,28]. Convolutional neural networks (CNNs), a 
subset of neural networks, excel in image-related tasks because of their 
ability to automatically learn hierarchical features from images 
[70,22,43]. Furthermore, the image training process involves feeding 
large datasets into these neural networks, allowing them to learn pat
terns, shapes, and relationships in the data. Thus, through iterative 
training and optimization, the networks gradually refine their parame
ters to improve accuracy and predictive power [31,20]. 

Generative adversarial networks (GANs) have also emerged as a 
pivotal model in image training. GANs comprise two networks, namely, 
a generator and a discriminator, which engage in a competitive process 
[77,55,73,26,42]. The generator produces images, and the discriminator 
evaluates their authenticity. Through this adversarial training, GANs 
can generate highly realistic images that are often indistinguishable 
from actual photographs [41,3]. Image training models have been 
applied in the architectural and interior design fields. Moreover, efforts 
have been made to employ these techniques to identify the information 
represented in interior design styles and make it comprehensible to 
computers [25,38,8]. Kim et al. [2019] and Kim and Lee [36] proposed a 
method that uses reference images and a deep learning model to prob
abilistically detect and incorporate interior design style information. 
Furthermore, Liu et al. [45] used deep learning to explore trends in 
interior design in different regions. Furthermore, Kim and Lee [37] 
performed the automatic recognition of room usage within indoor 
photographs of South Korean apartments, which was integrated into an 
intelligent management system for interior reference images. Through 

Fig. 1. Overview of the proposed approach.  
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these investigations, the application of machine learning models for the 
enhancement of spatial design visualization has been examined consis
tently, with ongoing endeavors aimed at improving quality outcomes as 
shown in Fig. 2. 

In summary, various approaches have been proposed to automati
cally recognize interior spaces and components using machine learning. 
Although data-driven design recognition models have been presented, 
limited discussion exists regarding the practical implementation of 
spatial design visualization. However, with the advancement of image 
generation techniques, image-trained models are becoming increasingly 
sophisticated. For example, diffusion-based methods allow models 
trained on one dataset to be fine-tuned for other relevant datasets, 
thereby reducing the need for extensive training on diverse design 
recognition [47,29]. Therefore, this study proposes a machine learning- 
based approach to spatial visualization that can efficiently generate 
interior design styles. 

2.3. Potentials for automating spatial visualization using image-gen AI 

Considerable studies explore the field of deep learning-powered 
image synthesis [34,60,39]. However, the full potential for effectively 
visualizing spatial designs remains to be thoroughly explored. This study 
acknowledges the potential impact of image-gen AI in interior archi
tecture and proposes a methodology aimed at achieving effective spatial 
visualization via the integration of design styles. The methodology 
harnesses the capabilities of advanced machine learning techniques, 
leveraging the progress made in large language models (LLMs) and 
image generation. Consequently, the once-distant prospect of generating 
spatial visualization images based on textual descriptions is well within 
reach currently. 

Text-to-image (txt2img) generation produces highly realistic visual 
representations [18,63,17]. Hence, it emerges as a versatile tool with the 
potential to create diverse spatial visualization content. As AI technol
ogy continues to evolve, the translation of textual concepts into tangible 
visual outputs can play a pivotal role within interior architecture [64]. 
This evolution extends beyond conventional approaches, unlocking new 
avenues for innovative and imaginative possibilities in image-gen AI. 
Furthermore, it is poised to become an indispensable tool that bridges 
the gap between text-based ideas and realistic visual representations in 
interior architecture. This integration aligns with the broader trend of AI 
enhancing creative processes across various industries [46]. 

3. Intensive test on image-gen AI for design styles 

3.1. Image-gen AI models 

In the evolving landscape of AI-based generative models, txt2img 
generation, in particular, has progressed significantly [10]; Oppen
laender, 2023. Entities such as models “D,” “M” [48], and “SD” are 
noteworthy. These models are distinguished in the field of image-gen AI, 
each marked by unique technological attributes, strengths, and limita
tions [Oppenlaender, 2023. This study conducts a comprehensive ex
amination and comparative analysis of the txt2img generation 
capabilities inherent in these models. Moreover, it deliberately excludes 
considerations related to the user interface and usability. This study 
explores the technical intricacies underlying the txt2img generation 
functionalities offered by these models. 

Model “D’ is renowned for its ability to comprehend and interpret 
textual prompts to create detailed and intricate images [75,56]. How
ever, its complexity and resource-intensive nature may yield longer 
processing times. Furthermore, owing to its reliance on textual inputs, 
generating images without textual cues could be challenging. Model “M’ 
is another notable image-gen AI model that specializes in producing 
images inspired by a specific visual style or artistic concepts [50]. It 
emphasizes artistic interpretation and style transfer, enabling users to 
generate images closely aligning with the desired aesthetics. However, 
its focus on artistic expression might yield less accurate representations 
of real-world objects or scenes. In addition, Model “SD’ is an image-gen 
AI model that prioritizes stability and accuracy in image generation 
[Rombach, 2022. Using small large language models (sLLMs), it gener
ates images with well-defined attributes and features. This approach 
ensures that the generated images precisely match the intended design 
specifications. The model’s strength is its ability to generate realistic and 
detailed images, making it suitable for scenarios where precision is 
paramount [67,6]. 

Despite its strengths, it also has specific limitations. Users should 
consider their projects and the desired outcomes when selecting an 
image-gen AI model. Thus, the study suggests that model SD is partic
ularly well-suited for fine-tuning models focused on interior design 
styles due to its emphasis on stability, accuracy, and generation of im
ages with well-defined attributes. Precision and faithful representation 
of design elements are crucial in interior design. Model SD’s precision, 
attention to detail, realistic visuals, control over attributes, design 
consistency, and suitability for iterative design processes make it a 
compelling choice for fine-tuning models in this domain. Furthermore, 
its capabilities align perfectly with the need for precision and visual 

Fig. 2. Comparison between previous CNN-based image recognition model for interior design styles [Kim et al., 2020] and our proposed generation approach.  
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fidelity necessary to effectively visualize and communicate diverse 
interior design aesthetics. Moreover, as an open-source model, SD offers 
an adaptable usage for researchers. The transparency of the source code 
enables researchers to understand and modify the underlying algo
rithms, enabling tailored applications and contributing to advancements 
in the field of image generation. 

3.2. Image generation test for design styles 

In this section, we conducted an intensive test to evaluate the 
recognition level of 25 distinct design styles using the image-gen AI 
Model “SD’. The selection of design styles prioritized diversity to align 
with the objectives of the comprehension evaluation test. The criteria for 
selection were as follows: 1) diversity (cultural, regional, and temporal 
diversity, 2) comparability (the presence of visually distinctive charac
teristics allowing for comparative analysis between styles), and 3) 
popularity and recognition. Based on these criteria and considering their 
distinctive features and similarities, we selected the following 25 design 
styles [52,68,19,7]: Modern, Contemporary, Rustic, Scandinavian, In
dustrial, Hygge, Sustainable, Retro, Zen, Brutalism, Mediterranean, 
Oriental, Shabby, Provence, Cottage core, Victorian, Tudor, French, 
Neo-classic, Bohemian, Art Nouveau, Maximalist, Kinfolk, Eclectic, and 
Junk. The image generation test, based on the 25 selected design styles, 
was conducted using the txt2img approach. The operations involved in 
generating images using image-gen AI are as follows: 

genTarget ("target", AIM, Param)→GI (1) 

The genTarget() fun‘ction is pivotal in the image generation process, 
considering “target” (the designated design style), AIM (the default 
image-gen AI model), and Param (parameters including scene descrip
tion prompt (SDP) and visual quality prompt (VQP)) as inputs to produce 
generated images (GI). In addition, SDP is crucial for evaluating how 
well the generated images understand the design style. To this end, 
design style-related prompts were input concisely to provide minimal 
information about the design style and spatial zoning (e.g., a living 
room), preventing the default model from making inferences based on 
textual descriptions. Meanwhile, VQP guides the model to meet high 
standards of visual quality during image generation, and it provides 
criteria for generating visually appealing, realistic, and effectively 
composed images. Accordingly, the text prompts were categorized into 
both reflective and nonreflective aspects, classifying them into positive 
and negative aspects, as structured in Table 1. 

if (Most GIi ∕∈ TI) then (2)  

RecognitionLevel (GI, Keywords) =
1
N

∑N

i=1
1(GIi reflects Keywords)

(2.1)   

Operation (2) is instrumental in recognizing when most generated 
images (GIi) do not align with the target image (TI), serving as a 
mechanism to identify mismatches between GI s and TI. Moreover, 
Operation (2.1) quantifies the extent to which generated images incor
porate key elements of the target design style, with 1 being an indicator 
function that assesses the presence of these elements within each GIi. A 
low recognition level, as determined by Operation (2.2), triggers the 
fine-tuning process, suggesting that the AI’s default output does not 
sufficiently capture the target design’s characteristics. 

getFTM(target ∨ TI)→FTM (3) 

Following a low recognition level, Operation (3) outlines the tran
sition from the AIM to a FTM, incorporating both the target design style 
and the TI to enhance model accuracy. 

genTarget(target, FTM,Param)→TI (4) 

Operation (4) depicts image generation using the FTM, aiming to 
produce images that more accurately reflect the TI, thereby improving 
the model’s fidelity to the designated design style. The recognition 
mechanism in the intensive test, primarily through Operation (2) and its 
derivatives (2.1 and 2.2), plays a vital role in assessing the AI model’s 
performance in generating design-congruent images. By evaluating the 
incorporation of key design elements into GIs, this mechanism facilitates 
the identification and rectification of instances where the model’s 
output falls short of expectations. Therefore, these operations and 
functions are integral to our methodology, ensuring the generation of 
images that adhere closely to the desired design style, with the flexibility 
to adjust parameters based on specific design styles and study objectives. 

3.3. Model fine-tuning for expanded use scenarios 

According to the previous discussion regarding the image generation 
process, we evaluate the recognition level associated with 25 design 
styles using the generated images. Precisely defining such design styles 
are challenging because of their qualitative nature, and interpretations 
may vary depending on individual perspectives. However, they are 
primarily derived from common visual characteristics that frequently 
appear in various design cases. These visual characteristics can be 
expressed using style keywords that encompass design elements, fin
ishes, colors, and more. Therefore, we evaluated the default model’s 
understanding of 25 interior design styles based on four criteria: 1) 
understanding of style-related keywords (i.e., color and ambiance), 2) 
expression of style-related material finishes, 3) composition and furni
ture arrangement within the target space (living room), and 4) image 
quality level (i.e., resolution, aspect ratio, and form). Furthermore, the 
default model consistently demonstrated stable generation capabilities 
and produced high-quality images for most styles. However, it exhibited 
limited comprehension for styles with lower recognition or those 
reflecting current trends, such as “Brutalism, Zen” or “Retro, Sustain
able,” resulting in restricted expressive abilities for these specific styles. 

if RecognitionLevel (GI, Keywords) < Threshold ⇒ Proceed to Fine − Tuning (2.2)   

Table 1 
Standardized template of prompts for design styles.  

Prompt Positive Negative 

SDP Target design style (e.g., Modern), spatial zoning (e.g., a living room), floor-to- 
ceiling windows 

Excessive clutter and chaos, disorganized layout, dull and uninspiring colors, 
overwhelming patterns and textures, inadequate lighting and ambiance 

VQP Professional photograph, photorealistic rendering, enhanced detail, V-ray 
rendering, full HD, masterpiece, highly detailed, high quality, 8 K, full shot, high 
depth of field (f/22, 35 mm), high-key lighting, realistic shadows, and attention to 
detail 

Bad proportion, low quality, awkward shadows, pixelated textures, worst, noisy, 
unrealistic reflections, normal quality, watermark, bad perspective, confusing 
details, blurry textured, faint, text, tacky, crowded, and signature  
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This limitation is attributed to the nature of AI models that generate 
results based on the provided training data. Model fine-tuning was 
conducted to address these constraints and enhance the accuracy of 
image generation for specific design styles as shown in Fig. 3. 

4. Model fine-tuning of design styles 

4.1. Overall process 

In this section, the model fine-tuning process (FT) involves the 
following three steps as shown in Fig. 4. First, FT1) data preparation 
(including preprocessing) entails preparing and preprocessing the data 
specific to the target. This includes tasks such as collecting reference 
images, cleaning and organizing the dataset, and ensuring data format 

consistency. Second, FT2) hyperparameter optimization centers around 
optimizing the model’s hyperparameters to enhance its performance in 
generating target images. This optimization involves fine-tuning pa
rameters such as learning rate, batch size, and network architecture to 
achieve improved results. Finally, FT3) training involves training the 
model using the prepared dataset and optimized hyperparameters. The 
model grasps the specific characteristics and nuances of the target 
design style, enabling it to generate images that closely align with the 
desired style. Following these three procedures, model fine-tuning was 
conducted on the default model to enhance its proficiency in generating 
images of the target design style. 

Fig. 3. Proposed approach to model fine-tuning for image-gen AI-assisted spatial visualization.  

Fig. 4. Overall process of model fine-tuning.  
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4.2. Data preparation 

To train Design Style DS, we require training data TD = {TID,TTD}, 
which consists of pairs of images and corresponding text, serving as 
design style references. Training Data(TD) for fine-tuning consists of two 
components: training image data (TID) and training text data (TTD) 
associated with design styles. 

To obtain superior quality and consistent representations in the TID, 
we carefully extracted image data from specialized interior design 
magazines and reputable online sources, which is one of the methods for 
preparing such data. The criteria for collecting image data include the 
following aspects: 1) inclusion of images that capture indoor spaces from 
floor to ceiling; 2) categorization of images into well-defined stylistic 
categories; 3) presence of keyword elements within images that repre
sent specific design styles. Subsequently, preprocessing tasks such as 
image resizing were performed. The preprocessed design style images 
serve as training image data. We conducted a comprehensive captioning 
effort by adding textual annotations to the gathered images to enhance 
the precision of each distinctive style. Each training image data is 
mapped one-to-one with the training text data. 

4.3. Hyperparameter optimization 

This study applied the low-rank adaptation (LoRA) methodology for 
fine-tuning models It is particularly useful in natural language pro
cessing and computer vision and is an efficient method for fine-tuning 
large pretrained models [24]. This is achieved by introducing small, 
trainable matrices that interact with the original model’s fixed weights 
[32]. A major advantage of LoRA is its ability to fine-tune large models 
more efficiently for specific tasks or datasets. Moreover, the original 
weights of the model remain unchanged, preserving the model’s general 
knowledge and capabilities. The only components trained are the added 
low-rank matrices, which require significantly less computational power 
and resources than training the entire model [74]. Using LoRA in this 
study, we could tailor the model for specific purposes, avoiding the 
intensive resource demands typically associated with training large- 
scale AI models. 

The efficiency of LoRA can be enhanced via hyperparameter opti
mization. Although hyperparameter optimization encompasses various 
settings, this study primarily focused on optimizing parameters such as 
the train batch size, epochs, learning rate, learning rate scheduler, and 
learning rate warmup. The goal of this optimization is to strike a balance 
where the low-rank matrices are adequate for the model to adapt to new 
tasks or datasets without imposing an excessive burden on computa
tional resources. Thus, employing this combined approach can enhance 
the performance of fine-tuned model while leveraging the advantages of 
using pretrained models. 

In this study, we adjusted the hyperparameters and fine-tuned each 
combination. Subsequently, we extracted the resulting loss values to 
assess the image quality. Our analysis focused on the effects of various 
hyperparameter configurations to primarily identify those that yield the 
best performance in the effective generation of interior design style 
images. The HParam and operator optimizeHyperparameter() can be 
outlined as follows: 

HParam = {hparamj

⃒
⃒
⃒1 < j ≤ n; n

= number of hyperparameters for training AIM}

optimizeHyperparameter(HParam)→OHP  

4.4. Training 

During the training phase, using the training dataset established in 
Section 4.2, fine-tuning is performed. The fine-tuned LoRA model is 
employed alongside the default model, and the application rate is 

denoted by weight W. To ensure the training process’s versatility, this 
study introduces the FineTune() operator. Thus, the fine-tuned model 
can be used to generate TIs in the following operations: 

FineTune(AIM,TID,TTD, OHP)→FTM  

genTarget(FTM ∨ (FTM,W), SDP,VQP)→TI  

4.5. Test and evaluation of fine-tuned models and their application 

This integration enabled us to train the model using the gathered 
dataset, including both reference images and textual annotations. 
Through the training process, the model learned and improved its image 
generation capabilities, resulting in high-quality images that effectively 
capture the essence of the designated design styles. Moreover, by using 
the refined dataset and optimized hyperparameters, we effectively 
facilitated the generation of design visualization images that are more 
precise and visually captivating. In this section, we proceed with the 
testing, evaluation, and application of the fine-tuning models. 

The LoRA-based fine-tuning used in this study employed the mean 
squared error (MSE) loss function, which was selected to minimize the 
difference between the generated and training dataset (original) images, 
considering minimizing pixel values. Hyperparameters encompass 
various settings; however, this study focused on optimizing parameters 
such as the train batch size, epochs, learning rate, learning rate sched
uler, and learning rate warmup. These parameters were optimized to 
enhance the fine-tuning model performance. Thus, the final quality of 
the fine-tuned model was evaluated based on various criteria, one of 
which was the loss value that represents the difference between the 
model’s predictions and the actual results. The final loss values for the 
superior and inferior models were 0.02 and 0.03, respectively, indi
cating a 33.3 % difference. This difference in convergence levels be
tween the two cases suggests that the superior model had a lower loss 
value than the inferior model, implying that the superior model 
exhibited better performance. Furthermore, these results demonstrate 
that the lower loss value of the superior model indicates superior 
generalization ability for the dataset. 

Accordingly, the weight parameters of the selected fine-tuned model 
determine the extent to which the model contributes to the final output. 
For example, a weight of 0.1 signifies that the fine-tuned model con
tributes 10 % to the generated outcome. To assess this approach’s 
effectiveness, we conducted tests using the same prompt while varying 
the LoRA weight. Table 2 presents the outcomes of the tests, displaying 
the generated images under different LoRA weight configurations. The 
results reveal that the fine-tuned model noticeably influences the gen
eration of design style images that were previously unattainable. Higher 
LoRA weights correspond to a more significant effect of the fine-tuned 
model on the image generation process. 

5. Demonstration 

5.1. Overview 

Interior design encompasses various styles and trends based on the 
combination of design elements, color choices, and materials used. 
Furthermore, each space reflects unique preferences and styles influ
enced by culture, region, and individual tastes [66]. This diversity fa
cilitates the emergence of new design styles and various adaptations. 
However, the default model of image-gen AI may not always accurately 
capture the diversity of design styles and stay up-to-date with the latest 
trends. Hence, the fine-tuning approach proposed in this study enables 
the effective generation of customized designs tailored to user prefer
ences. In addition, style keywords play a crucial role in categorizing 
design styles, facilitating the visual representation of various styles 
through keyword combinations. In this section, we have constructed 
design style models that encompass unrecognized design styles and the 
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latest trend styles as shown in Fig. 5. We employed these models to 
generate images showcasing 25 diverse design styles, including mono
styles and multistyles (mix and match). Thus, we demonstrate the ability 
to generate spatial visualization images for specific design styles that 
were challenging for the default model. Consequently, we effectively 
visualize several design styles based on trends and user preferences, 
enabling the creation of spaces that align with user objectives. 

5.2. Model fine-tuning of design styles 

In this section, we describe the procedures performed to fine-tune the 
default model for a specific design style. These procedures include FT1) 
data preparation, FT2) hyperparameter optimization, and FT3) training. 
During the data preparation stage, as detailed in Section 4.2, the training 
data for fine-tuning are divided into two categories, namely, reference 
images and textual annotations offering descriptive information about 
each image. Our study facilitated the comparison of visualizations of 
various design styles by standardizing the target space. Consequently, 
we focused on the living room, a central area in residential spaces, as our 
designated target space. 

For a high-quality dataset, we meticulously collected image data 
from specialized interior design magazines, such as Architectural Digest 
and Interior Design, and from reputable online sources such as Houzz 
[Architectural [2]; Interior [27,23]. The criteria for image data collec
tion are as follows: 1) inclusion of images that comprehensively capture 
indoor spaces from floor to ceiling, 2) organization of images into clearly 
defined stylistic categories, and 3) presence of keyword elements within 
images that signify specific design styles. Subsequently, all the collected 

images underwent preprocessing to prepare the dataset. This pre
processing included resizing the images to the most effective size for 
LoRA training, which is 512 x 512 pixels. Subsequently, we performed a 
labeling task by manually adding text annotations to the preprocessed 
images to represent the design style information for each image. To 
enhance the accuracy, prompt engineering was conducted for each 
design style. It involves designing and fine-tuning the text prompts that 
are input into the model when using image-gen AI. This process guides 
the model to perform specific tasks and generate outputs in the desired 
direction. Moreover, the design styles under investigation in this study 
are subjective in nature, and their interpretation can vary based on in
dividual perspectives, making it challenging to provide a precise defi
nition. Consequently, for prompt engineering in this study, we extracted 
detailed keywords related to design styles from the collected images, 
focusing on design elements, finishing materials, colors, and mood. 
Examples of these keywords utilized in actual fine-tuning are provided 
in Table 3. Subsequently, we constructed approximately 400 training 
datasets by one-to-one mapping of the processed images with textual 
data. Fig. 6 presents an overview of the FT1 step. 

The fine-tuned model’s quality is significantly influenced by the 
optimization of hyperparameters such as epochs, learning rate, learning 
rate scheduler, and learning rate warmup. These parameters directly 
impact how well the model can adapt and learn when incorporating new 
data. The epoch parameter determines the number of training sessions, 
while the learning rate parameter controls the size of weight adjust
ments, striking a balance between how rapidly the model converges and 
its stability during training. Moreover, the learning rate scheduler ad
justs the learning rate during the training process, facilitating efficient 
training. In addition, the learning rate warmup gradually increases the 
learning rate at the beginning of training to ensure a stable process. 
Accurately configuring these hyperparameters is critical for achieving a 
high-quality model extension within the LoRA framework. By exper
imenting with different types and configurations of hyperparameters, 
we conducted various training experiments to achieve superior quality 
in the target design styles. As per the test results, the hyperparameters 
for further training were set with a batch size of 2, 150 epochs, and a 
learning rate of 0.0001, while other parameters were configured as 
detailed in Table 4. In this demonstration, we set the optimization cri
terion for hyperparameters to achieve loss values below 0.02 (refer to 
Section 4.3). The final values for these hyperparameters were deter
mined through trial-and-error optimization and are detailed in Table 4. 

During the FT3) training step, the training procedure used training 

Table 2 
Test of fine-tuned models according to weight W.  

W 0.3 0.6 0.9 

GI 

Fig. 5. Demonstration overview: 25 interior design style generation using base model and fine-tuned models.  

Table 3 
An example training dataset. We constructed a text prompt using detailed de
scriptions of content (e.g., a Space Zoning), style (e.g., a design style), and scene.   

Training Image Data (TID) Training Text Data (TTD) 

TD A Zen-style interior in a living room 
characterized by minimalism, serenity, 
balance, and Japanese aesthetics. 
Utilize finishing materials such as 
natural wood, soft textiles, and subdued 
hues to create a serene ambiance, 
harmonizing with the neutral tones and 
color scheme to establish a truly 
calming atmosphere.  
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data and specific hyperparameter configurations to create distinct 
design styles, and it occurred on a local computer equipped with an RTX 
A6000 GPU with a memory capacity of 47.5 GB. The training procedure 
was completed within 20 min. Following the fine-tuning of the model, a 
LoRA model was produced, which had a compact size of 144 MB and was 
saved in the (.safetensors) format. This refined model, obtained from 
fine-tuning, is employed alongside the default model for generating 
images. An overview of the FT3) step is shown in Fig. 7. 

The model was trained on the style of TID and specific design re
quirements derived from TTD. Furthermore, this dataset was employed 
to produce interior space images guided by prompts incorporating 
distinct design styles. Configuration settings applied during the image 
generation process using Image-Gen AI, including sampling approaches, 
sampling intervals, dimensions (width and height), and CFG scale, 
significantly influence the outcomes. Thus, in this section, we have 
identified optimal configuration settings aligning with the objective of 
generating interior space images that portray each unique design style. 
Table 5 presents elaborate information regarding these settings. The two 

cases presented in Table 6 generate interior space images using the same 
input. The only difference between Cases A and B is the use of the fine- 
tuned model developed in this study. The outcomes demonstrate the 
successful achievement of our objective of generating images that 
embody design styles previously unrecognized, achieved via the fine- 
tuning of the image-gen AI model. 

5.3. Generating spatial visualization images reflecting various design 
styles 

In this study, the primary objective of fine-tuning the image-gen AI 
model was to understand diverse trend-sensitive design styles. Interior 
design encompasses various styles and trends characterized by unique 
design elements, color palettes, and materials. In addition, each space 
possesses a distinct style influenced by factors such as region, culture, 
and user preferences. Nevertheless, the default model may not always 
accurately capture the latest trends in interior design. 

Meanwhile, the approach proposed in this study enables the gener
ation of interior space images reflecting various design styles and fa
cilitates the emergence and evolution of new design styles and 
variations. Therefore, in this section, we conduct demonstrations 
following the approach outlined in Section 5.2. Using both the default 
and fine-tuned models, we generated images representing 25 different 
types of design styles, and the target space was limited to living rooms. 
Table 7 displays mono-style case images generated to represent specific 
design styles. To assess whether these generated results appropriately 
capture a particular style, we evaluated them based on three criteria, 
namely, 1) inclusion of design style-related keywords; 2) Spatial 
arrangement, furniture placement, and the degree of form distortion; 3) 
Image quality, including resolution and aspect ratio. As this study pri
marily focuses on design styles, we determined the appropriateness of 
Criterion 1) by selecting images that met Criteria 2) and 3). Table 7 
reveals that the generated images effectively incorporate relevant key
words at a high level for each design style, reaffirming the fine-tuned 
model’s effectiveness in generating design styles while considering 
user preferences. 

By combining various styles and trends and introducing novel design 
concepts, creativity can be inspired. Our approach involved careful 

Fig. 6. Overview of FT1: data preparation.  

Table 4 
FT2: Hyperparameter optimization for model fine-tuning.  

Hyperparameters Purpose Value 

Batch size for 
training 

Optimized to balance efficiency and 
performance by determining 
number of training examples processed together 
in each iteration 

2 

Epoch 
(Training steps) 

Controls the number of times the model goes 
through the entire training dataset, striking a 
balance between performance and 
computational 

150 

Learning rate Determines the step size for parameter updates 
during training 
optimized to achieve effective convergence and 
performance 

0.0001 

Learning rate 
scheduler 

Specifies how the learning rate changes 
throughout the training 

constant 

Learning rate 
warmup 

Gradually increasing the learning rate at the 
beginning of training to stabilize the 
optimization process and promote smoother 
and more stable learning 

10  
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curation and harmonization of elements, including design keywords, 
material finishes, and color palettes. This deliberate selection aimed to 
break free from conventional designs and create unique design envi
ronments by blending diverse styles. Moreover, by using a fine-tuned 
model that embraces user preferences and facilitates the mixing and 
matching of interior design elements, we are empowered to efficiently 
offer customized design solutions. As previously mentioned, the result
ing image dataset serves as a valuable resource in the field of interior 

design and as a foundation for exploring design styles [38]. Further
more, the archiving of this dataset serves a dual purpose—as a tool for 
training other generative AI models and as a source for fostering creative 
image generation. To visualize the outcomes of our multistyle (mix and 
match) approach, Table 8 presents the findings of image generation. 

5.4. Application of the proposed approach to diverse usage scenarios 

In this section, we generate interior space images using the image-to- 
image generation method, employing a fine-tuned model to reflect 
interior design styles. This study aimed to enable the visualization of 
virtual styles solely through images, without additional modeling. This 
simplifies the intricate process of design visualization, supporting spatial 
redesign decisions through user experience and comparative analysis. 
Thus, applying the fine-tuned model to interior space visualization fa
cilitates intuitive and realistic design comparisons. Table 9 presents 

Fig. 7. Overview of FT3: training.  

Table 5 
Configuration settings for image generation.  

Base 
model 

Sampling 
method 

Sampling 
steps 

CFG 
scale 

Resolution 

SD v1.5 
ckpt 

DPM + 2 M 
Karras 

25 13 1024 × 512 
(2:1)  

Table 6 
Qualitative comparison of image generation using fine-tuned models.   

Case A Case B 

Input Type Space Zoning A living room 
Design Style Zen Style 

Prompt SDP Zen-style interior, a living room. Use clean lines, neutral colors, and natural materials. Include a low-profile sofa, a Japanese-style coffee table, 
and a small indoor plant to add a touch of nature. 

VQP PP_VQP 
NP_VQP 

Model FTM − YonseiITlab_Zen Style_Interior.safetensors 
Output AI-based 

generated image 
(in large) 

AI-based 
generated images 

… … 

Quick Review − Specific drawing style: low 
− Fidelity of domain issue: low 
− Image quality: low 

− Specific design style: high 
− Fidelity of domain issue: high 
− Image quality: high 

(ex) PP_VQP = “Professional photograph, photorealistic rendering, enhanced detail, v-ray rendering, full HD, masterpiece, highly detailed, high quality, 8 k, full shot, 
deep depth of field, f/22, 35 mm, high-key lighting, realistic shadows”. 
(ex) NP_VQP = “Bad proportion, low quality, awkward shadows, pixelated textures, worst, noisy, unrealistic reflections, normal quality, watermark, bad perspective, 
confusing details, blurry textured, blurry, faint, text, tacky, crowded, signature”. 
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Table 7 
Results of mono-style image generation.   

Case A Case B Case C 

Input Type Space 
zoning 

A living room 

Design 
style 

Zen Retro  Brutalism 

Prompt SDP Zen-style interior, a living 
room, Serene, minimalist, 
neutral, Japanese esthetics, 
simplicity, natural elements, 
balance, bamboo, stone 

Retro style interior, Living 
room, vintage, nostalgic, 
playful patterns, mid-century, 
wallpapers, vinyl flooring, 
Formica countertop, Bold 
colors  

Brutalism style interior, living room, unfinished, concrete, minimal, stark, angular, bold, exposed concrete, steel, glass, plywood, metal mesh 

VQP PP_VQP 
NP_VQP 

Model FTM YonseiITlab_Zen 
Style_Interior.safetensors 

YonseiITlab_Retro 
Style_Interior.safetensors  

YonseiITlab_Brutalism 
Style_Interior.safetensors 

W 0.8 0.8  0.8 
Output AI-based 

generated image 
(in large) 

AI-based 
generated 
images 

… … … 
Quick review − Specific design style: high 

− Fidelity of domain issue: high 
− Image quality: high  
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Table 8 
Results of multistyle image generation (mix and match).   

Case A Case B 

Input Type Space Zoning A living room 
Design Style Style A Style B Style A Style B 

Brutalism Junk Industrial French 
Prompt SDP Brutalism style interior, living room, unfinished, concrete, 

minimalist, stark, angular, bold, exposed concrete, steel, glass, 
plywood, metal mesh, junk-style interior, living room, eclectics, 
vintage, repurposed, mismatched, salvaged items, recycled materials, 
and unique items 

Industrial-style interior, a living room, raw, exposed materials and a 
rugged, urban esthetic brick, concrete, metal, reclaimed wood, 
French-style interior, a living room, elegant, sophisticated, ornate 
details, luxurious fabrics, and a sense of refinement 

VQP PP_VQP 
NP_VQP 

Model FTM YonseiITlab_Brutalism 
Style_Interior.safetensors 
YonseiITlab_Junk 
Style_Interior.safetensors 

YonseiITlab_Industrial 
Style_Interior.safetensors 

W 0.7/0.3 0.5/0.5 
Output AI-based Generated 

Image 
(in Large) 

Style C (A + B) Style C (A + B) 
Brutalism þ Junk Industrial þ French 

AI-based Generated 
Images 

… … 

Quick Review − Specific design style: high 
− Fidelity of domain issue: high 
− Image quality: high 

− Specific design style: high 
− Fidelity of domain issue: high 
− Image quality: high  

Table 9 
Results of image-to-image generation.   

Case A Case B Case C 

Input Type Space 
Zoning 

A living room 

Design 
Style 

Kinfolk Brutalism Contemporary þ Retro 

Prompt SDP Kinfolk-style interior,  
A living room, minimal, organic, natural 
light, simple lines, serene, light and airy 
finishes 

Brutalism style interior, a living room, 
unfinished, concrete, minimal, stark, angular, 
bold, exposed concrete, steel, glass, plywood, 
metal mesh 

Contemporary and retro style interior, a living 
room, bold and vibrant colors, vintage, 
nostalgic, playful patterns, mid-century, 
wallpapers 

VQP PP_VQP 
NP_VQP 

Model FTM YonseiITlab_Kinfolk 
Style_Interior.safetensors 

YonseiITlab_Brutalism 
Style_Interior.safetenso 

YonseiITlab_Retro 
Style_Interior.safetensors 

Seed Image 

Output AI-based 
Generated Images  

… … … 
Quick review − Specific design style: high 

− Fidelity of domain issue: high 
− Image quality: high  
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examples of images generated by reflecting various styles in the same 
space. 

6. Available resources and limitations of the work 

To access a concise preview of the implemented image-gen AI models 
and downloadable resources, please use the provided webpage hyper
link [Contemporary Design Pictures Archive Web, 2023. The linked page 
includes shared images depicting 25 distinctive interior design styles, 
accompanied by design-specific keywords and finishing materials for 
image generation.This study explored the automatic generation of 
spatial visualization images representing various design styles using 
image-gen AI. In this study, we performed intensive testing on the 
default model and developed fine-tuned models that incorporate diverse 
design styles. This was performed with consideration for the subjective 
and varied nature of design styles, aiming to assess the potential of 
image-gen AI as a tool for spatial visualization that can cater to the 
preferences of different users. 

To this end, we employed prompt engineering to keyword the design 
elements, finishes, and spatial arrangements associated with each design 
style, enabling us to build the fine-tuned models. However, this 
approach was primarily demonstrated in residential living spaces, and 
its applicability to other space types remains limited. Furthermore, 
technical challenges remain in accurately representing complex ele
ments such as shadows, reflections, and furniture shapes in the gener
ated images, primarily due to AI models’ inherent reliance on training 
datasets. Consequently, future models can undergo improvement and 
adjustments to achieve higher levels of accuracy. 

In addition, a more generalized approach is required to accommo
date the multifaceted nature of design styles, encompassing both 
emotional and conceptual aspects. Nonetheless, the findings of this 
study demonstrate that image-gen AI can be a valuable tool in the field 
of interior architecture, allowing for the intricate implementation of the 
visual characteristics of design styles, thereby enhances accessibility to 
visualization without requiring expert assistance. Moreover, while this 
study primarily focused on the design styles and living rooms, there is a 
potential for methodological expansion to cater to various requirements 
based on region, culture, and specific spatial purposes. Further efforts 
will be required to develop user-friendly applications that consider 
practical usage into account. 

7. Conclusions 

This study presents a pioneering exploration of the integration of 
generative AI into interior architectural design, with a strong emphasis 
on automating spatial visualization. The combination of AI-generated 
images and textual descriptions introduces a novel approach for 
conveying design concepts. Notably, this study emphasizes the revolu
tionary impact of AI-driven image generation, especially through the 
txt2img model, acting as a conduit for advanced spatial visualization. 
This study showcases the efficacy of fine-tuning image-gen AI models 
using diverse training techniques, enabling the efficient creation of 
interior architectural visualization images tailored to user preferences. 
Moreover, the study underscores the potential of AI-powered image 
generation across various design visualization applications, including 
the evolution toward user-centric design and personalization trends. 

Furthermore, the research explores the role of image-gen AI in 
enhancing spatial design visualization and bridging the gap between 
textual descriptions and realistic visual outputs, which aligns with the 
broader trend of AI transforming creative processes across industries. By 
presenting practical scenarios that prioritize interior design styles and 
emphasizing the synergy between AI, design knowledge, and visuali
zation, this study contributes to the evolution of architectural and design 
practices. The contributions of the proposed methodology to the spatial 
design visualization approach are as follows:  

(1) Enhanced spatial design visualization: AI models can create vivid 
and realistic visualizations from textual descriptions, aiding ex
perts, nonexperts, and stakeholders in better understanding and 
communicating design concepts.  

(2) Concept communication: Txt2Img AI allows experts to easily 
convey their ideas to nontechnical audiences. Moreover, complex 
spatial design visualization concepts can be translated into 
accessible visuals, fostering improved collaboration and 
understanding.  

(3) Accessibility: AI-generated visualizations democratize access to 
spatial design visualization. Even those without advanced design 
software skills can create high-quality visuals using simple tex
tual input. 

Although this research focused on fine-tuning models for interior 
design styles, the methodology can be extended to accommodate diverse 
requirements based on regional, cultural, and user preferences. 
Furthermore, although the presented application is a demo, the future 
goal is to develop accessible applications that offer real and experiential 
usage, enhancing the potential of AI-supported visualization in archi
tectural design. 

Statement of conflicting interests 

The authors state that they do not have any known financial interests 
or personal relationships that could have influenced the findings of this 
study. 

Data availability statements 

The first or corresponding author (PI) can provide most of the data 
for training and/or models that were used in this study upon a reason
able request, as well as the links in references and the technical resource 
section. In addition, the paper includes references to the archives and 
links provided by the PI. 

Credit authorship contribution statement 

Jin-Kook Lee: Conceptualization, Data curation, Funding acquisi
tion, Investigation, Methodology, Project administration, Supervision, 
Validation, Writing – original draft, Writing – review & editing. Hyun 
Jeong: Formal analysis, Methodology, Validation, Writing – original 
draft, Writing – review & editing. Youngchae Kim: Formal analysis, 
Investigation, Methodology, Validation, Writing – original draft, Writing 
– review & editing. Seung Hyun Cha: Formal analysis, Methodology, 
Supervision, Validation, Writing – original draft, Writing – review & 
editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This work was supported in 2023 by the Korea Agency for Infra
structure Technology Advancement (KAIA) grant funded by the Ministry 
of Land, Infrastructure and Transport (Grant RS-2021-KA163269). This 
work was supported by the National Research Foundation of Korea 
(NRF) grant funded by the Korea government (MIST) (No. NRF- 
2022R1A2C1093310). 

J.-K. Lee et al.                                                                                                                                                                                                                                   



Advanced Engineering Informatics 62 (2024) 102686

13

References 

[1] J. Abualdenien, A. Borrmann, Vagueness visualization in building models across 
different design stages, Adv. Eng. Inf. 45 (2020) 101107. 

[2] Architectural Digest (2023). Retrieved from http://architecturaldigest.com. 
[3] Arjovsky, M., Chintala, S., & Bottou, L. (2017, July) Wasserstein generative 

adversarial networks. In International conference on machine learning (pp. 214- 
223). PMLR. 

[4] C. Ah-Soon, K. Tombre, Variations on the analysis of architectural drawings, Proce. 
Fourth Int. Conference on Document Analysis and Recognition 1 (1997) 347–351. 

[5] O. Atilola, M. Tomko, J.S. Linsey, The effects of representation on idea generation 
and design fixation: a study comparing sketches and function trees, Des. Stud. 42 
(2016) 110–136. 

[6] A. Baldrati, D. Morelli, G. Cartella, M. Cornia, M. Bertini, R. Cucchiara, Multimodal 
garment designer: human-centric latent diffusion models for fashion image editing, 
arXiv preprint arXiv:2304.02051 (2023). 

[7] Baty, P. (2017). The anatomy of colour: The story of heritage paints and pigments. 
Thames & Hudson. 

[8] S. Bell, K. Bala, Learning visual similarity for product design with convolutional 
neural networks, ACM Trans. Graph. 34 (2015) 1–10. 

[9] K. Borg, V. Sahadevan, V. Singh, T. Kotnik, Leveraging generative design for 
industrial layout planning: SWOT analysis insights from a practical case of 
papermill layout design, Adv. Eng. Inf. 60 (2024) 102375. 

[10] H. Chang, H. Zhang, J. Barber, A.J. Maschinot, J. Lezama, L. Jiang, D. Krishnan, 
Muse: text-to-image generation via masked generative transformers, arXiv preprint 
arXiv:2301.00704 (2023). 

[11] C.-S. Chan, Operational definitions of style, Environ. Planning B 21 (1994) 
223–246. 

[12] C.-S. Chan, Can style be measured? Des. Stud. 21 (2000) 277–291. 
[13] F.D.K. Ching, A visual dictionary of architecture, John Wiley & Sons, 2011. 
[14] M.L. Chiu, Collaborative design in CAAD studios: Shared ideas, resources, and 

representations, Proce. Int. Conference on CAAD Future 95 (1995) 749–759. 
[15] J. Cherneff, R. Logcher, J. Connor, N. Patrikalakis, Knowledge-based interpretation 

of architectural drawings, Res. Eng. Des. 3 (1992) 195–210. 
[16] C. Eckert, M. Stacey, Sources of inspiration: a language of design, Des. Stud. 21 

(2000) 523–538. 
[17] D. Epstein, A. Jabri, B. Poole, A.A. Efros, A. Holynski, Diffusion self-guidance for 

controllable image generation, arXiv preprint arXiv:2306.00986 (2023). 
[18] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A.H. Bermano, G. Chechik, D. Cohen-Or, 

An image is worth one word: personalizing text-to-image generation using textual 
inversion, arXiv preprint arXiv:2208.01618 (2022). 

[19] E. Gates, Elements of style: Designing a home & a life, Simon & Schuster, 2014. 
[20] L.A. Gatys, A.S. Ecker, M. Bethge, Image style transfer using convolutional neural 

networks, Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (2016) 2414–2423. 
[21] G. Goldschmidt, Creative architectural design: reference versus precedence, 

J. Architectural and Planning Res. (1998) 258–270. 
[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 

Y. Bengio, Generative adversarial nets, Adv. Neural Inf. Proces. Syst. 27 (2014). 
[23] Houzz (2009). Retrieved from http://www.houzz.com. 
[24] E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, W. Chen, Lora: low-rank 

adaptation of large language models, arXiv preprint arXiv:2106.09685 (2021). 
[25] Z. Hu, Y. Wen, L. Liu, J. Jiang, R. Hong, M. Wang, S. Yan, Visual classification of 

furniture styles, ACM Trans. Intelligent Systems and Technol. (TIST) 8 (2017) 
1–20. 

[26] K. Ikeno, T. Fukuda, N. Yabuki, An enhanced 3D model and generative adversarial 
network for automated generation of horizontal building mask images and 
cloudless aerial photographs, Adv. Eng. Inf. 50 (2021) 101380. 

[27] Interior Design (2023). Retrieved from http://interiordesign.net. 
[28] P. Isola, J.Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional 

adversarial networks, Proce. IEEE Conference on Comp. Vision and Pattern 
Recognition (2017) 5967–5976. 

[29] Z. Jiang, Y. Ma, Y. Xiong, Bio-inspired generative design for engineering products: 
a case study for flapping wing shape exploration, Adv. Eng. Inf. 58 (2023) 102240. 

[30] B. Jonson, Design ideation: the conceptual sketch in the digital age, Des. Stud. 26 
(2005) 613–624. 

[31] Johnson, J., Alahi, A., Fei-Fei, L. (2016) Perceptual losses for real-time style 
transfer and super-resolution. In Computer Vision–ECCV 2016: 14th European 
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part 
II 14 (pp. 694-711). Springer International Publishing. 

[32] D. Kalajdzievski, A rank stabilization scaling factor for fine-tuning with LoRA, 
arXiv preprint arXiv:2312.03732 (2023). 

[33] T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative 
adversarial networks, Proce. IEEE/CVF Conference on Comp. Vision and Pattern 
Recognition (2019) 4401–4410. 

[34] B. Kawar, S. Zada, O. Lang, O. Tov, H. Chang, T. Dekel, I. Mosseri, M. Irani, Imagic: 
Text-based real image editing with diffusion models, Proce. IEEE/CVF Cnference 
on Comp. Vision and Pattern Recognition (2023) 6007–6017. 

[35] Kilmer, R., Kilmer, W. O. (2014). Designing interiors. John Wiley & Sons: Hoboken, 
NJ, USA, 2014 (pp. 17-24). 

[36] J. Kim, J.K. Lee, Stochastic detection of interior design styles using a deep-learning 
model for reference images, Appl. Sci. 10 (2020) 7299. 

[37] J. Kim, J.-K. Lee, Auto-recognition of interior design images for managing 
architectural design references—Focused on the module implementation for 
recognizing the usage of rooms of Korean apartments, J. Korean Inst. Inter. Des 27 
(2018) 13–20. 

[38] Kim, J., Song, J., Lee, J. K. (2019). Approach to auto-recognition of design 
elements for the intelligent management of interior pictures. In Proceedings of the 
24th international conference on computer-aided architectural design research in 
Asia: Intelligent and informed, CAADRIA, (785-794). 

[39] Kim, K., Park, S., Lee, J., Choo, J. (2023). Reference-based image composition with 
sketch via structure-aware diffusion model. arXiv preprint arXiv:2304.09748. 

[40] Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012) Imagenet classification with 
deep convolutional neural networks. In Proceedings of the advances in neural 
information processing systems, lake Tahoe, NV, USA, 3–6 December 2012, pp. 
1097-1105. 

[41] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, 
A. Tejani, J. Totz, Z. Wang, W. Shi, Photo-realistic single image super-resolution 
using a generative adversarial network, Proc. IEEEConference on Comp. Vision and 
Pattern Recognition (2017) 4681–4690. 

[42] J. Lee, J. Heo, J. Lee, Enhancement of virtual data quality using pre-trained 
Bayesian transfer learning under inaccurate and insufficient measurement data, 
Adv. Eng. Inf. 59 (2024) 102241. 

[43] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436–444. 
[44] M. Lin, T. Chen, H. Chen, B. Ren, M. Zhang, When architecture meets AI: a deep 

reinforcement learning approach for system of systems design, Adv. Eng. Inf. 56 
(2023) 101965. 

[45] X. Liu, C. Andris, Z. Huang, S. Rahimi, Inside 50,000 living rooms: an assessment of 
global residential ornamentation using transfer learning, EPJ Data Sci. 8 (2019) 4. 

[46] P.E.D. Love, W. Fang, J. Matthews, S. Porter, H. Luo, L. Ding, Explainable artificial 
intelligence (XAI): precepts, models, and opportunities for research in construction, 
Adv. Eng. Inf. 57 (2023) 102024. 

[47] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, M. Chen, 
Glide: towards photorealistic image generation and editing with text-guided 
diffusion models, arXiv preprint arXiv:2112.10741 (2021). 

[48] Midjourney (2023). Midjourney (V5) [Text-to-image model]. https://www. 
midjourney.com/. 

[49] P. Milgram, F. Kishino, A taxonomy of mixed reality visual displays, IEICE Trans. 
Inf. Syst. 77 (1994) 1321–1329. 

[50] J. Oppenlaender, The creativity of text-to-image generation, Proce. 25th Int. 
Academic Mindtrek Conference (2022) 192–202. 

[51] R. Oxman, Theory and design in the first digital age, Des. Stud. 27 (2006) 229–265. 
[52] Pile, J. F. (1988). Interior Design. 
[53] D.M. Phare, N. Gu, M. Ostwald, Representation in design communication: 

meaning-making in a collective context, Frontiers in Built Environ. 4 (2018) 36. 
[54] J. Qu, Y. Zhang, W. Tang, W. Cheng, Y. Zhang, L. Bu, Developing a virtual reality 

healthcare product based on data-driven concepts: a case study, Adv. Eng. Inf. 57 
(2023) 102118. 

[55] A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep 
convolutional generative adversarial networks, arXiv preprint arXiv:1511.06434 
(2015). 

[56] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, I. Sutskever, Zero-shot 
text-to-image generation, International Conference on Machine Learning (2021) 
8821–8831 (PMLR). 

[57] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, M. Chen, Hierarchical text-conditional 
image generation with clip latents, arXiv preprint arXiv:2204.06125 (2022). 

[58] K.F. Richter, B. Weber, B. Bojduj, S. Bertel, Supporting the designer’s and the user’s 
perspectives in computer-aided architectural design, Adv. Eng. Inf. 24 (2010) 
180–187. 

[59] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, B. Ommer, High-resolution image 
synthesis with latent diffusion models, Proce. IEEE/CVF Conference on Comp. 
Vision and Pattern Recognition (2022) 10674–10685. 

[60] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, K. Aberman, Dreambooth: Fine 
tuning text-to-image diffusion models for subject-driven generation, Proce. IEEE/ 
CVF Conference on Comp. Vision and Pattern Recognition (2023) 22500–22510. 

[61] S. Sabeti, O. Shoghli, M. Baharani, H. Tabkhi, Toward AI-enabled augmented 
reality to enhance the safety of highway work zones: feasibility, requirements, and 
challenges, Adv. Eng. Inf. 50 (2021) 101429. 

[62] R. Sacks, Z. Wang, B. Ouyang, D. Utkucu, S. Chen, Toward artificially intelligent 
cloud-based building information modelling for collaborative multidisciplinary 
design, Adv. Eng. Inf. 53 (2022) 101711. 

[63] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E.L. Denton, M. Norouzi, 
Photorealistic text-to-image diffusion models with deep language understanding, 
Adv. Neural Inf. Proces. Syst. 35 (2022) 36479–36494. 

[64] A.B. Saka, L.O. Oyedele, L.A. Akanbi, S.A. Ganiyu, D.W.M. Chan, S.A. Bello, 
Conversational artificial intelligence in the AEC industry: a review of present 
status, challenges and opportunities, Adv. Eng. Inf. 55 (2023) 101869. 

[65] P. Sanguinetti, S. Abdelmohsen, J. Lee, J. Lee, H. Sheward, C. Eastman, General 
system architecture for BIM: An integrated approach for design and analysis, Adv. 
Eng. Inf. 26 (2012) 317–333. 

[66] H.A. Simon, Style in design, in: C.M. Eastman (Ed.), Spatial Synthesis in Computer- 
Aided Building Design, Wiley:, New York, NY, USA, 1975, pp. 287–309. 

[67] K. Sohn, N. Ruiz, K. Lee, D.C. Chin, I. Blok, H. Chang, D. Krishnan, StyleDrop: text- 
to-image generation in any style, arXiv preprint arXiv:2306.00983 (2023). 

[68] A. Speltz, Styles of ornament: A collection of 4,000 architectural ornaments, 
Gramercy Books, 1994. 

[69] Sutherland, I. E. (1964) Sketch pad a man-machine graphical communication 
system. In Proceedings of the share design automation workshop (pp. 6.329- 
6.346). 

[70] Taigman, Y., Yang, M., Ranzato, M. A., Wolf, L. (2014) Deep face: Closing the gap 
to human-level performance in facenverification. In Proceedings of the IEEE 

J.-K. Lee et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1474-0346(24)00334-3/h0005
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0005
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0020
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0020
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0025
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0025
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0025
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0030
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0030
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0030
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0040
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0040
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0045
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0045
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0045
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0050
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0050
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0050
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0055
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0055
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0060
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0065
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0070
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0070
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0075
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0075
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0085
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0085
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0090
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0090
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0095
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0095
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0095
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0100
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0105
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0105
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0110
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0110
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0115
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0115
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0125
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0125
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0130
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0130
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0130
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0135
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0135
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0135
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0145
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0145
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0145
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0150
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0150
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0155
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0155
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0165
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0165
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0170
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0170
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0170
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0175
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0175
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0175
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0185
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0185
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0190
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0190
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0190
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0190
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0215
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0215
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0215
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0215
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0220
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0220
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0220
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0230
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0235
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0235
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0235
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0240
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0240
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0245
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0245
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0245
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0250
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0250
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0250
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0260
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0260
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0265
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0265
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0270
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0280
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0280
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0285
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0285
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0285
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0290
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0290
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0290
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0295
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0295
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0295
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0300
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0300
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0305
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0305
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0305
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0310
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0310
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0310
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0315
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0315
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0315
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0320
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0320
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0320
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0325
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0325
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0325
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0330
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0330
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0330
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0335
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0335
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0335
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0340
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0340
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0340
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0345
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0345
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0350
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0350
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0355
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0355


Advanced Engineering Informatics 62 (2024) 102686

14

conference on computer vision and pattern recognition, Columbus, OH, USA (24- 
27 June 2014) (pp. 1701-1708). 

[71] M. Uhm, G. Lee, Y. Park, S. Kim, J. Jung, J.K. Lee, Requirements for computational 
rule checking of requests for proposals (RFPs) for building designs in South Korea, 
Adv. Eng. Inf. 29 (2015) 602–615. 

[72] Z. Wang, P. Zheng, X. Li, C.H. Chen, Implications of data-driven product design: 
from information age towards intelligence age, Adv. Eng. Inf. 54 (2022) 101793. 

[73] K. Xu, X. Kong, Q. Wang, S. Yang, N. Huang, J. Wang, A bearing fault diagnosis 
method without fault data in new working condition combined dynamic model 
with deep learning, Adv. Eng. Inf. 54 (2022) 101795. 

[74] Z. Ye, D. Li, J. Tian, T. Lan, J. Zuo, L. Duan, M. Tang, ASPEN: high-throughput 
LoRA fine-tuning of large language models with a single GPU, arXiv preprint arXiv: 
2312.02515 (2023). 

[75] J. Yu, Y. Xu, J.Y. Koh, T. Luong, G. Baid, Z. Wang, Y. Wu, Scaling autoregressive 
models for content-rich text-to-image generation, arXiv preprint arXiv:2206.10789 
2 (2022) 5. 

[76] Yigitbas, E., Nowosad, A., & Engels, G. (2023). Supporting construction and 
architectural visualization through BIM and AR/VR: A systematic literature review. 
arXiv preprint arXiv:2306.12274. 

[77] J.Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using 
cycle-consistent adversarial networks, Proce. IEEE Int. Conference on Comp. Vision 
(2017) 2242–2251. 

J.-K. Lee et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S1474-0346(24)00334-3/h0370
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0370
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0370
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0375
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0375
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0380
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0380
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0380
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0385
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0385
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0385
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0390
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0390
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0390
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0400
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0400
http://refhub.elsevier.com/S1474-0346(24)00334-3/h0400

	Creating spatial visualizations using fine-tuned interior design style models informed by user preferences
	1 Introduction
	2 Background
	2.1 Spatial design visualization Automation
	2.2 Machine learning for spatial Visualization: Applying interior design styles
	2.3 Potentials for automating spatial visualization using image-gen AI

	3 Intensive test on image-gen AI for design styles
	3.1 Image-gen AI models
	3.2 Image generation test for design styles
	3.3 Model fine-tuning for expanded use scenarios

	4 Model fine-tuning of design styles
	4.1 Overall process
	4.2 Data preparation
	4.3 Hyperparameter optimization
	4.4 Training
	4.5 Test and evaluation of fine-tuned models and their application

	5 Demonstration
	5.1 Overview
	5.2 Model fine-tuning of design styles
	5.3 Generating spatial visualization images reflecting various design styles
	5.4 Application of the proposed approach to diverse usage scenarios

	6 Available resources and limitations of the work
	7 Conclusions
	Statement of conflicting interests
	Data availability statements
	Credit authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


