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The genetic changes that prime editing can introduce include 
insertions, deletions and all 12 possible point mutations, as 
well as combinations of these changes1. Prime editors are 

composed of a Cas9 nickase–reverse transcriptase (RT) fusion pro-
tein and a pegRNA. The pegRNA contains a guide sequence that 
recognizes the target sequence, a tracrRNA scaffold sequence, a 
primer binding site (PBS) required for the initiation of reverse 
transcription and an RT template that includes the desired genetic 
changes and sequences homologous to the targets1. Four types 
of prime editors have been developed: PE1, PE2, PE3 and PE3b1. 
Because PE1 is less efficient than the others, it is not expected to 
be widely used. Unlike PE2, PE3 and PE3b require a single guide 
RNA (sgRNA) in addition to a pegRNA. Furthermore, compared 
to PE2, PE3 results in more frequent unintended indels1,2, and the 
use of PE3b is often restricted by the target sequence composition1. 
PE3 and PE3b usually, but not always, show higher efficiency than 
PE2 (refs. 1,2). Thus, PE2, PE3 or PE3b will be chosen depending on 
the purpose and conditions of the experiments in question, as well 
as the target sequences of interest. Given that both PE3 and PE3b 
are composed of PE2 and an additional sgRNA1, the efficiency of 
PE2 at a given target sequence will also affect the efficiencies of PE3 
and PE3b at the target1. Thus, the evaluation and prediction of PE2 
activity at a given target sequence should also assist in the predic-
tion of PE3 and PE3b efficiencies.

Previously, high-throughput evaluation of the activities of Cas9, 
Cas12a and base editors at a large number of target sequences in 
human cells enabled the identification of factors associated with 
such activities and the development of computational models that 
predict Cas9 and Cas12a efficiencies at given target sequences, both 
of which have greatly assisted genome editing using these CRISPR 

nucleases3–14. Similarly, the identification of factors affecting prime 
editing efficiencies and the development of computational models 
predicting prime editing activities based on high-throughput evalu-
ation would greatly facilitate prime editing, especially given that 
prime editing efficiencies have been tested at only a limited number 
of target sequences and that no computational models that predict 
prime editing efficiency are currently available1,2. In this study, we 
tested PE2 efficiencies using 54,836 pairs of pegRNA-encoding 
sequences and corresponding target sequences, which enabled 
the identification of factors associated with PE2 efficiency and the 
development of a computational model that predicts PE2 efficiency 
at given target sequences.

Results
High-throughput evaluation of PE2 efficiency. For high- 
throughput analysis of PE2 efficiencies, we adopted and modified 
the paired library approach that we and others previously used to 
evaluate the activities and outcomes of Cas12a and Cas9 at thou-
sands of target sequences6–11,15. We prepared a lentiviral plasmid 
library, named library 1, from a pool of oligonucleotides that con-
tained 48,000 pairs of pegRNA-encoding sequences and correspond-
ing target sequences (= 2,000 target sequences × 24 combinations 
of PBS and RT templates per target sequence) (Supplementary  
Fig. 1a,b). The position numbering system used for the pegRNA and 
target sequence in this study is described in Supplementary Fig. 1c. 
To test the effect of changing the PBS and RT template lengths, the 
library included 24 different combinations of PBS and RT template 
lengths (six PBS lengths (7, 9, 11, 13, 15 and 17 nucleotides (nts) × 
four RT template lengths (10, 12, 15 and 20 nts) = 24 combinations) 
for 2,000 pairs of guide and target sequences to induce a transversion 
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mutation from G to C at position +5 from the nicking site (position 
22 within the wide target sequence), which comprises 48,000 (= 24 
× 2,000) pairs of pegRNA and target sequences (Supplementary Fig. 
1b). Furthermore, to evaluate the effect of factors other than PBS 
and RT template lengths on the PE2 efficiency, we generated one 
more paired library, named library 2, which contains 6,800 pairs of 
pegRNA-encoding sequences and corresponding target sequences. 
The factors tested using library 2 include editing positions, types of 
editing (for example, insertion, deletion or substitution) and loca-
tions of two-position editing (Supplementary Fig. 1b).

HEK293T cells were transduced with lentivirus generated from 
the plasmid library to construct a cell library at 0.3 multiplicity of 
infection (MOI), and untransduced cells were removed by puromy-
cin selection (Fig. 1a). Each cell in this library expresses a pegRNA 
and includes the corresponding integrated target sequence. This 
cell library was then transfected with a plasmid-encoding PE2, and 

untransfected cells were removed by blasticidin selection. Four and 
a half days after the transfection with the PE2 plasmid, genomic 
DNA was isolated from the cells and subjected to polymerase chain 
reaction (PCR) to amplify the target sequences. The amplicons were 
subjected to deep sequencing to measure the mutation frequencies 
induced by PE2. Sanger sequencing showed that 8.5% (= 12/142) of 
the copies in the plasmid library contained at least one mutation in 
the guide sequence, scaffold, PBS, RT template or target sequence 
regions (Supplementary Table 1a), which would be attributable to 
errors introduced during oligonucleotide synthesis and PCR-based 
amplification. Furthermore, when high-throughput evaluations 
are performed using lentiviral vectors, two distant elements can be 
shuffled16–19. When we measured the rate of uncoupling between the 
pegRNA-encoding and barcode target sequences in the cell library, 
it was 4.2% (Supplementary Table 1b), compatible with previously 
observed rates14,16–19. Given that almost no prime editing would 
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Fig. 1 | High-throughput evaluation of PE2 activity using libraries of pegRNA–target sequence pairs. a, Schematic representation of the experimental 
procedure. b, c, The correlations between PE2 efficiencies measured at endogenous sites and those at corresponding integrated target sequences. The data 
sets of PE2 efficiencies at endogenous sites; the data from the initial study (b, ref. 1, n = 36 pairs of pegRNAs and target sequences, HEK293T cells); or the 
data set, named PE2-Endo, that we newly generated in the current study (c, n = 31 pairs of pegRNAs and target sequences, HEK293T cells) were used. PE2 
efficiency was determined as the proportion of sequence reads with specified edits among the total sequence reads. The Spearman’s (R) and Pearson’s 
(r) correlation coefficients are shown. d, The correlation between SpCas9-induced indel frequencies and PE2 efficiencies determined for identical target 
sequences. To minimize the effect of PBS and RT template lengths, the pegRNA that showed the highest efficiency among 24 pegRNAs with different PBS 
and RT template lengths was chosen per target sequence. The color of each dot was determined by the number of neighboring dots (that is, dots within a 
distance that is three times the radius of the dot). Similar graphs based on PBSs and RT templates with fixed lengths are shown in Supplementary Figs. 5 and 
6. The number of pegRNA and target sequence pairs n = 1,956.
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occur with these mutant or uncoupled sequences, the observed PE2 
efficiency would be 87% (= 100% − 8.5% − 4.2%) of the true PE2 
efficiency (that is, if the true PE2 efficiency is 25%, the observed 
PE2 efficiency would be 25% × 87% = 22%). We observed strong 
correlations between replicates independently transfected by two 
different experimentalists (Supplementary Fig. 2) and combined the 
data from the two replicates for subsequent analyses. This result is 
in line with the strong correlation between replicates in our previ-
ous similar experiments with Cas9 (refs. 10,11).

We next determined the correlations between editing efficiencies 
measured at the integrated sequences using the high-throughput 
approach and those at endogenous sites evaluated by individual 
tests. When we evaluated this correlation using a published data set 
of PE3 efficiencies from the initial study1, there was also a strong 
correlation (Fig. 1b; Spearman’s correlation coefficient (R) = 0.59, 
Pearson’s correlation coefficient (r) = 0.69). Furthermore, we also 
generated six new data sets of PE2 efficiencies at 20–31 endog-
enous sites randomly selected from the 54,836 pegRNAs of librar-
ies 1 and 2 (Supplementary Tables 2 and 3). In these experiments, 
plasmids encoding PE2 and pegRNAs were transiently transfected. 
We observed high correlations between the PE2 efficiencies at the 
endogenous sites and the corresponding integrated target sequences 
in a reproducible manner (Fig. 1c and Supplementary Fig. 3). The 
average PE2 efficiency obtained using libraries 1 and 2 was 9.9%, 
which is similar to 9.5%, the efficiency observed in the initial study1 
(Supplementary Fig. 4).

The correlation between SpCas9 and PE2 activities. For prime 
editing, Cas9 needs to bind the target sequence and make a 
nick1. Thus, it is expected that the activities of PE2-pegRNA and 
Cas9-sgRNA would be highly correlated. We previously evaluated 
the indel frequencies associated with Cas9-sgRNA activity at 2,000 
target sequences10. When we evaluated the association of the activi-
ties of PE2-pegRNA and Cas9-sgRNA at the same target sequences, 
we observed modest correlations (Fig. 1d and Supplementary  
Figs. 5 and 6) as expected. The reason for the modest, rather than 
strong, correlations would be that prime editing requires additional 
processes that are barely or not relevant to the indel-generating 
activity of Cas9; these processes include reverse transcription of the 
pegRNA, 5′ flap cleavage and DNA repair. Factors associated with 
these processes are described below. Both PE2 (when the optimal 
combination of PBS and RT template lengths are chosen) and Cas9 
nuclease efficiencies showed basically uniform distributions, with 
the exception that those with high activities were relatively rare 
(Supplementary Fig. 7). Additionally, PE, but not Cas9, efficiencies 
showed a very weak tendency toward a bimodal distribution, with 
modes when the editing was almost nonexistent (lower than 2% effi-
ciency) and when it was around 25%. However, when all pegRNAs 
with the 24 combinations of PBS and RT template lengths are con-
sidered, the relative frequency of pegRNAs generally decreased as 
the PE2 efficiency increased.

The effect of PBS and RT template lengths on PE2 efficiency. For 
prime editing at a given target sequence, various combinations of 
PBS and RT template lengths can be chosen, and the lengths of these 
two regions in the pegRNA significantly affect prime editing effi-
ciency1. Thus, we next evaluated the effect of different PBS and RT 
template lengths on the PE2 efficiencies at 2,000 target sequences. 
When we calculated the average editing efficiencies for each combi-
nation of PBS and RT template lengths, they showed a unimodal dis-
tribution; the highest average efficiency (13.4%) was observed when 
pegRNAs with an 11- to 13-nt PBS and a 10- to 12-nt RT template 
were used (Fig. 2a and Supplementary Fig. 8). If we define poorly 
working pegRNAs as those associated with PE2 efficiencies lower 
than 5%, depending on the PBS and RT template lengths, 28~81% 
(average, 43%) of pegRNAs fell into this category (Supplementary 

Fig. 9); in other words, 19~72% (average, 57%) of pegRNAs led 
to PE2 efficiencies higher than 5% (Fig. 2b and Supplementary  
Fig. 9b). We found that the optimal combination of the PBS and 
RT template lengths is variable depending on the target sequences, 
which is compatible with previous observations using human cells1 
and plants2. Thus, we next evaluated how frequently each combina-
tion of PBS and RT template lengths induced the highest editing 
efficiencies per given target sequence. These values also showed 
a unimodal distribution; the highest editing efficiencies were the 
most frequently observed when a 9- to 13-nt PBS and a 10- to 12-nt 
RT template were used (Fig. 2c). In the past, when we chose the 
combination of PBS and RT template lengths that led to the high-
est editing efficiency at a given target sequence, it was not known 
whether the effects of the PBS and RT template lengths were inde-
pendent of each other. Analysis of our large data set allowed us to 
determine that these two parameters are independent (P = 0.25 by a 
chi-square test; Supplementary Fig. 10).

We also compared the average editing efficiencies of each com-
bination of PBS and RT template lengths when the most efficient 
pegRNA at each target was selected. Surprisingly, the average edit-
ing efficiencies under these optimal combinations of PBS and RT 
template lengths were the highest when the lengths of the PBS and 
RT template were short (for example, a 7-nt PBS and a 10- to 12-nt 
RT template) and decreased as the PBS and RT template lengths 
increased (Fig. 2d). Taken together, these results lead us to recom-
mend using a 13-nt PBS and a 12-nt RT template for initial testing 
of PE2 efficiencies and expanding to a 9- to 15-nt PBS and a 10- to 
15-nt RT template for the second round of testing, which is basically 
compatible with the lengths of the initial study recommendation 
(for an approximately 13-nt PBS and a 10- to 16-nt RT template), 
which is based on individual evaluations at five target sequences1. 
When we compared the efficiencies of pegRNAs with a 13-nt PBS 
and identical target sequences and intended edits but with differ-
ent RT template lengths, we observed relatively high correlations 
between them (Supplementary Fig. 11), suggesting that other fac-
tors affect PE2 efficiencies.

Factors associated with PE2 efficiency. To evaluate other factors 
associated with PE2 efficiency in a more systematic manner, we 
next performed Tree SHAP (SHapley Additive exPlanations merged 
into XGBoost algorithm)20 using 1,766 features that include melting 
temperature, GC counts, GC contents, the minimum self-folding 
free energy of various regions in the pegRNAs, the lengths of 
PBS and the RT template, the DeepSpCas9 score (computation-
ally predicted Cas9 nuclease activities at a given target sequence10) 
and direct sequence information, such as all position-dependent 
and position-independent mononucleotides and dinucleotides. 
When high feature values were linked with high and low prime 
editing efficiencies, then the features were classified as favored 
and disfavored features, respectively. The most important feature 
was the DeepSpCas9 score (favored) at the corresponding target 
sequence (Fig. 2e), which is in line with the correlation between 
SpCas9-induced indel frequencies and PE2 efficiencies as shown 
above. GC counts in PBS (favored) was the second most important 
feature. In line with this result, GC contents in PBS (favored) was 
also the 11th most important feature (Supplementary Fig. 12). GC 
content can be calculated by dividing the GC count (the number of 
G or C nucleotides) with the length of the relevant DNA strand. The 
importance of these features can be understood given that a high 
GC count in PBS would result in strong binding of the pegRNA to 
the nicked strand of the target DNA, which is required for reverse 
transcription. When we systematically evaluated the effects of GC 
contents and GC counts in PBS, the RT template and the combina-
tion of PBS and RT template on PE2 efficiency, we clearly observed 
higher PE2 efficiencies as the GC contents and GC counts of PBS 
increased (Supplementary Fig. 13). When the GC contents of the 
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PBS were lower than 30%, PE2 efficiencies were poor for all tested 
PBS lengths, although longer lengths, such as 15 nts, resulted in 
relatively high editing efficiency. Conversely, when the GC contents 

of the PBS were higher than 60%, shortening the PBS to a length of 
7–11 nts led to a relatively high PE2 efficiency. On the basis of these 
results, we recommend using a PBS that is 15 or 9 nts in length when 
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the GC contents are lower than 40% or higher than 60%, respec-
tively (Supplementary Fig. 14). However, the GC contents and GC 
counts of the RT template only slightly affected PE2 efficiencies, and 
the PE2 efficiencies tended to be low when the GC-related param-
eters were extremely high or low. Compatible with these findings, 
neither the GC contents nor GC counts in the RT template were 
included in the 40 most important features.

The third and fifth most important features were, respectively, 
the melting temperature of PBS (favored) and that of the target 
DNA region that corresponds to the RT template (that is, between 
the strand containing the protospacer adjacent motif (PAM) and 
the opposite strand, here called the PAM-opposite strand; this fea-
ture was disfavored only when the melting temperature was higher 
than 35 °C). A high PBS melting temperature is likely to be asso-
ciated with high GC counts in the PBS and would be linked with 
strong binding of the PBS region of the pegRNA to the target DNA, 
which would facilitate the reverse transcription reaction. When 
we examined the relationship between PE2 efficiency and the PBS  
melting temperature, we found that, as the PBS melting tem-
perature increased, PE2 efficiency also increased (Supplementary  
Fig. 15a). If the melting temperature of the target DNA region that 
corresponds to the RT template is too high, the conversion of the 
3′ flap into a 5′ flap, a process that is required for incorporation of 
the reverse transcribed DNA sequence into the genome1, might be 
prevented. We analyzed the relationship between PE2 efficiencies 
and the melting temperature of this region and found that, when 
the melting temperature increased above 35 °C, the PE2 efficiency 
tended to decrease, although the difference was not statistically 
significant (Supplementary Fig. 15b). The fourth most important 
feature was the number of UUs in the RT + PBS region (disfa-
vored). This feature would result from a large number of Ts in the 
pegRNA-encoding sequences, corresponding to a large number of 
Us in the pegRNAs, which could reduce the efficiency of transcrip-
tion by RNA polymerase III21,22, leading to a decrease in intracellular 
pegRNA concentrations.

The sixth and eighth most important features were the presence 
of a T at position 16 (disfavored) and a C at position 17 (favored) in 
the wide target sequence (position 1 is the 20th nucleotide from the 
NGG PAM). It has previously been shown that a T at position 16 is 
associated with decreased Cas9 nuclease activity4,5,15. Furthermore, 
a T at position 16 decreases GC counts in PBS, which is not favor-
able for reverse transcription, especially when the length of PBS is 
short. These two effects combined would result in a T at position 
16 as the sixth most important feature. Similarly, previous work 
showed that, when a C is at position 17, the Cas9 nuclease activity 
slightly increased4,5,15. More importantly, a C at position 17 increases 
GC counts in PBS, facilitating reverse transcription. The combina-
tion of these two effects would render a C at position 17, a favored 
feature. The seventh, ninth and twelveth most important features 
were the RT and PBS length (generally disfavored), the RT template 
length (disfavored only when it is long) and the PBS length (gener-
ally disfavored), respectively, all of which were more deeply evalu-
ated above. The tenth most important feature was a G at position 24 
(disfavored) in the wide target sequence. The intended edit (+5 G to 
C) would replace a G at position 22, resulting in PAM editing, which 
would prevent re-binding of Cas9 to the target sequence. However, 
if the 24th nucleotide is a G, then a GG PAM sequence could be 
generated to span positions 23 and 24, a core PAM shift that would 
allow re-binding of Cas9 (refs. 11,23–25), leading to the nicking of the 
reverse transcribed DNA strand before the repair of the comple-
mentary strand1. In addition, we evaluated factors affecting PE2 
activity when the DeepSpCas9 score was excluded (Supplementary 
Text 2 and Supplementary Fig. 16).

For efficient prime editing, the initial study recommended that 
the last templated nucleotide should not be a G to avoid using 
RT templates that locate a C close to the 3′ hairpin of the sgRNA  

scaffold1. To examine the validity of this recommendation, which 
was based on observations at three target sequences (72 pegRNAs), 
we categorized the PE2 efficiencies at 887 target sequences (21,288 
pegRNAs) depending on the last templated nucleotide. Contrary to 
the initial finding, PE2 efficiencies were overall the highest when 
the last templated nucleotide was a G. Interestingly, the preferred 
nucleotide at the last templated position varied depending on the 
RT template length. When the RT template was relatively short, 
such as 10 or 12 nts, a G was strongly preferred, whereas an A or a 
T was not preferred (Fig. 2f). However, when the RT template was 
relatively long, such as 20 nts, then a C was favored, whereas A and 
G were not, which is partially in line with the initial study recom-
mendation. These preferences for the identity of the last templated 
nucleotide were similarly observed across six tested PBS lengths 
(Supplementary Fig. 17).

Effects of editing type and position on PE2 efficiency. So far, we 
have described our evaluation of PE2 efficiencies for G-to-C con-
versions at a fixed position (+5 from the nicking site) at 2,000 tar-
get sequences using library 1. We next evaluated PE2 efficiencies 
for more diverse kinds of genome editing using the 6,800 pegRNA 
and target sequence pairs (= 200 target sequences × 1 PBS per tar-
get sequence × 34 RT templates per target sequence) in library 2 to 
determine the effect of the type of genome editing (that is, the gen-
eration of indels versus substitutions), the position edited and the 
number of inserted or deleted nucleotides on the efficiency. We first 
evaluated the efficiencies of generating 1-bp insertions, 1-bp dele-
tions and 1-bp substitutions and found that the general efficiencies 
could be ranked as insertion ≥ deletion ≥ substitution and that the 
difference between the insertion and substitution efficiencies was 
statistically significant (Fig. 3a). Then, we assessed the effect of the 
type and number of inserted nucleotides on prime editing-induced 
insertions and found that the identity of the inserted nucleotide 
did not affect the 1-bp insertion efficiency. When we increased 
the number of inserted nucleotides from 1 bp to 2, 5 and 10 bp, 
the insertion efficiencies were similar for 1- and 2-bp insertions, 
decreased for 5-bp insertions and drastically decreased for 10-bp 
insertions (Fig. 3b). In parallel, we also evaluated the PE2 efficiency 
for 1-, 2-, 5- and 10-bp deletions; we found that the PE2 efficiencies 
were similar for 1-, 2- and 5-bp deletions and drastically decreased 
for 10-bp deletions (Fig. 3c).

We next examined the effect of the substituted nucleotide iden-
tity on the PE2 efficiency. We tested all 12 possible types of 1-bp 
substitutions at position +1 from the nicking site, which is between 
positions 17 and 18 in the wide target sequence, and found that the 
PE2 efficiencies differed slightly depending on the type of substi-
tution; C-to-T and T-to-G conversions showed the highest and the 
lowest PE2 efficiencies, respectively (Fig. 3d). To gain mechanistic 
insights into these effects, we considered the temporary base pairing 
between the nucleotide in the complementary DNA (cDNA) gen-
erated from the RT template and the corresponding nucleotide in 
the PAM-opposite strand. Interestingly, the PE2 efficiencies could 
be ranked as follows: T (cDNA) – G (corresponding nucleotide 
in the PAM-opposite strand) and G – T pairings ≥ C – T and T 
– C pairings ≥ C – A and A – C pairings ≥ A – G and G – A pair-
ings. The differences between the T – G and G – T pairing groups 
and the A – G and G – A pairing groups were statistically signifi-
cant, implying the possibility that temporary base pairing between 
the cDNA and PAM-opposite strands might affect PE2 efficiency. 
When the temporary base pairings were formed between the same 
nucleotides, such as T (cDNA) – T (corresponding nucleotide in the 
PAM-opposite strand), G – G, C – C and A – A, which correspond 
to A-to-T, C-to-G, G-to-C and T-to-A conversions, respectively, the 
PE2 efficiencies were all similar (Fig. 3d). In addition, when we ana-
lyzed the PE2 efficiencies for these four conversions mediated by the 
temporary base pairing between the same nucleotides at different 
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homology arms of the RT template was 14 nt (that is, in the cases of 1-bp substitutions, the length of the RT templates was 15 nt). Subsets of experimental 
groups without statistically significant (P < 0.05, ANOVA followed by two-sided Tukey’s post hoc test; exact P values are described in Supplementary 
Table 7) differences in PE2 efficiencies are represented with letters such as a–d in the order of the average PE2 efficiency (for example, if four hypothetical 
groups 1, 2, 3 and 4 are designated as b, c, ab and a, then the statistically significant differences in the prime editor efficiency are 4 > 1 > 2, 4 = 3 and 3 = 1). 
In the boxes, the top, middle and bottom lines represent the 25th, 50th, and 75th percentiles, respectively; whiskers indicate the 10th and 90th percentiles; 
and outliers are shown as individual dots. a, PE2 efficiencies for 1-bp insertions, deletions and substitutions. The number of pegRNA and target sequence 
pairs n = 739 for insertions, 178 for deletions and 566 for substitutions. b, Effect of the inserted nucleotide type and number on PE2 efficiency. The number 
of pegRNA and target sequence pairs n = 183, 183, 188, 185, 184, 179 and 163 for the insertion of A, C, G, T, AG, AGGAA (5 bp) and AGGGAATCATG 
(10 bp), respectively. c, Effect of the length of deletion on PE2 efficiency. The number of pegRNA and target sequence pairs n = 178, 189, 185 and 169 for  
1-, 2-, 5- and 10-bp deletions, respectively. d, Effect of the type of substitution on PE2 efficiency. The number of pegRNA and target sequence pairs 
n = 88, 87, 36, 35, 34, 44, 21, 20, 45, 45, 90 and 21 for C-to-T, C-to-G, A-to-G, A-to-C, A-to-T, G-to-T, T-to-A, T-to-C, G-to-C, G-to-A, C-to-A and T-to-G 
conversions, respectively. e, Effect of the editing position on the PE2 efficiency for 1-bp transversion substitutions. Editing positions shown on the x axis 
were counted from the nicking site. The number of pegRNA and target sequence pairs n = 179, 186, 184, 180, 173, 184, 182, 178, 177, 178 and 173 for 
position +1, +2, +3, +4, +5, +6, +7, +8, +9, +11 and +14, respectively. f, Effect of the editing position on the prime editing efficiency for 1-bp transversion 
substitutions at two positions. The number of pegRNA and target sequence pairs n = 190, 181, 186, 190, 177, 180, 183, 170, and 169 for position +1 and +2, 
+1 and +5, +1 and +10, +2 and +3, +2 and +5, +2 and +10, +5 and +6, +5 and +10 and +10 and +11, respectively. g, Relative frequency of partial editing 
depending on the distance between two editing positions described in f. Absolute frequencies of partial editing are shown in Supplementary Fig. 19. The 
total editing frequency includes the sum of the efficiencies of the intended edit at only the proximal position (the position closer to the nicking site than 
the distal position), only the distal position and both positions.
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positions, such as +9, +11 and +14 from the nicking site, we also 
observed that the efficiencies were similar for the four tested conver-
sions at all three tested positions (Supplementary Fig. 18), which is 
in line with the analyses at position +1 from the nicking site.

We also investigated the effect of the editing position on 1-bp sub-
stitution efficiencies. We found that editing efficiencies were gener-
ally similar at all tested positions, which ranged from +1 to +14 

from the nicking site, except at positions +3, +5 and +6 (Fig. 3e). 
The lowest editing efficiency was observed at position +3, although 
the underlying mechanism for this effect is not clear. The highest 
editing efficiencies were observed at positions +5 and +6, the posi-
tion of the GG PAM; as stated above, if the PAM is not edited, Cas9 
can re-bind to the target sequence and nick the reverse-transcribed 
DNA strand before the repair of the complementary strand1,  
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resulting in a decrease in the PE2 efficiency. This effect of PAM edit-
ing on PE2 efficiency can be also observed when 2-bp substitution 
efficiencies are evaluated. We generated 2-bp substitutions at vari-
ous positions and found that the editing efficiencies were consis-
tently higher when one or both nucleotides in the PAM (positions 
+5 and +6) were edited (for example, positions +1 and +5, posi-
tions +2 and +5, positions +5 and +6 and positions +5 and +10) 
than when the PAM was left intact (positions +1 and +2, positions 
+1 and +10, positions +2 and +3, positions +2 and +10 or positions 
+10 and +11 were edited) (Fig. 3f). Given that the editing position 
affects PE2 efficiency, the use of SpCas9 variants that recognize dif-
ferent PAMs11,26–32 instead of wild-type SpCas9 could improve PE2 
efficiencies at some target sequences. Interestingly, up to a median 
of 20% of sequences in which at least one of two intended edits were 
introduced have only one edit (Fig. 3g and Supplementary Fig. 19). 
Such partial editing rates were higher at the positions distal to the 
nicking site than at the proximal positions and showed a tendency 
to increase as the distance between the two positions increased.

Computational models that predict PE2 efficiencies. We next 
attempted to develop a computational model that predicts PE2 effi-
ciencies at a given target sequence paired with 24 different pegRNAs 
with variable PBS and RT template lengths. We previously used deep 
learning to develop accurate computational models that predict the 
efficiencies of Cas12a8 and Cas9 (refs. 10,11) at given target sequences. 
The PE2 efficiencies obtained using library 1, with 48,000 pairs of 
pegRNA and target sequences, were split into two data sets, named 
HT-training (n = 38,692) and HT-test (n = 4,457), by random sam-
pling (the same target sequences were never shared between the two 
data sets) (Supplementary Tables 2 and 4). Using HT-training as 
the training data, we generated computational models that predict 
PE2 efficiencies at a given target sequence paired with 24 pegRNAs 
with different combinations of PBS and RT template lengths when 
prime editing is designed for G-to-C conversion at position +5. 
Cross-validation showed that the deep learning framework has the 
highest performance, although the difference with L1 regression, 
the second best framework, was not statistically significant (Fig. 4a). 
When evaluated using HT-test as the test data set, we found that 
DeepPE, a deep learning-based model, significantly, albeit slightly, 
outperformed other models based on conventional machine learn-
ing (Fig. 4b and Supplementary Fig. 20), which is in line with the 
results of deep learning models of Cas12a8 and Cas9 (ref. 10). When 
tested using six replicates of PE2 efficiencies at endogenous sites as 
the testing data sets, the Spearman’s and Pearson’s correlation coeffi-
cients (R and r) were R = 0.67~0.77 (average, 0.73) and r = 0.63~0.74 
(average 0.69), respectively (Fig. 4b and Supplementary Fig. 21), 
suggesting good performance of DeepPE in predicting PE2 effi-
ciencies at endogenous sites. Evaluation of DeepPE in two addi-
tional cell types, HCT116 (a colorectal carcinoma cell line) and 
MDA-MB-231 (a human breast adenocarcinoma cell line), at target 
sequences that were never used for DeepPE training also revealed 
its good performance across biologicial and technical replicates 
(HCT116, R = 0.70~0.77 (average, 0.74), r = 0.57~0.61 (average, 
0.59); MDA-MB-231, R = 0.76~0.81 (average, 0.79), r = 0.62~0.65 
(average, 0.64)) (Supplementary Fig. 22 and Supplementary  
Table 5). We determined the usefulness of DeepPE for choosing the 
most efficient combination of PBS and RT template lengths (out 
of 24 possible combinations) for a given target sequence. When 
DeepPE was used, the average absolute and relative PE2 efficiencies 
were 1.2% and 8.3%, respectively, which was significantly higher 
than those obtained using recommendations based on the initial 
study (that is, 13-nt PBS and 12-nt RT template, avoiding a G at the 
last templated nucleotide) (Supplementary Fig. 23). Furthermore, 
for an intended edit, there could be multiple target sequences; in 
this case, DeepPE would be useful for choosing the target sequence 
that could be edited with the highest efficiency.

We also used the data set obtained using library 2 to develop two 
more computational models that predict PE2 efficiencies for various 
other editing types and positions than were evaluated above. The 
data obtained using library 2 was split into Type-training, Type-test, 
Position-training and Position-test such that target sequences were 
never shared between the training and test data sets (Methods 
and Supplementary Tables 2 and 4). Cross-validation using 
Type-training and Position-training revealed that random forest 
had the highest performances, although the differences with the 
second best frameworks were not statistically significant (Fig. 4c,d). 
In both cases, deep learning showed limited performance, possi-
bly owing to the relatively small number of target sequences and 
pegRNAs. When we evaluated using Type-test and Position-test, 
we observed that PE_type and PE_position, random forest-based 
models, showed useful performance (PE_type, R = 0.47, r = 0.48;  
PE_position, R = 0.56, r = 0.56) (Fig. 4e,f). Evaluation of prime 
editing efficiencies at a larger number of target sequences using 
pegRNAs with every possible PBS and RT template length and more 
diverse intended edits could yield more informative models.

We provide a web tool that provides the results of DeepPE, 
PE_type and PE_position for a given target sequence at http:// 
deepcrispr.info/DeepPE. When a sequence containing a target seq
uence is entered, this web tool identifies candidate target sequences 
and provides the expected PE2 efficiencies for a total of 57 pegRNAs 
(24 pegRNAs from DeepPE, 23 pegRNAs from PE_type and ten 
pegRNAs from PE_position) per target sequence. The 23 pegRNAs 
from PE_type are designed to generate four types of deletions  
(1-, 2-, 5- and 10-bp deletions at position +1), seven types of inser-
tions (insertions of A, C, G, T (1-bp), AG (2-bp), AGGAA (5-bp) 
and AGGAATCATG (10-bp) at position +1), all three possible 1-bp 
substitutions at position +1 and nine types of substitutions (A to 
T, C to G, G to C and T to A) at two positions (positions +1 and 
+2, +1 and +5, +1 and +10, +2 and +3, +2 and +5, +2 and +10, 
+5 and +6, +5 and +10 or +10 and +11). The ten pegRNAs from 
PE_position are designed to generate 1-bp substitutions (A to T, C 
to G, G to C and T to A) at positions +1, +2, +3, +4, +6, +7, +8, 
+9, +11 or +14.

Discussion
Prime editing is revolutionary in that it enables the introduction of 
any small genetic mutation in a fairly efficient manner without the 
use of donor DNAs. Together with the use of computational models 
(DeepPE, PE_type and PE_position), based on the results obtained 
in this study we recommend: 1) using a 13-nt PBS and a 12-nt RT 
template 2) with a high GC count in the PBS region if possible; 3) 
using a G at the last templated nucleotide when the RT template 
length is ≤12 nt; and 4) including PAM editing (detailed recom-
mendations are provided as Supplementary Text 3). We expect that, 
together with the computational models, the information about fac-
tors that affect PE2 efficiency identified in the current study based 
on high-throughput analyses will facilitate prime editing.
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Methods
Construction of PE2-expressing vector. The LentiCas9-Blast plasmid (Addgene 
no. 52962) was digested with AgeI and BamHI restriction enzymes (NEB) at 
37 °C for 4 h and treated with 1 μl of Quick-CIP (NEB) at 37 °C for 10 min. Next, 
the linearized plasmid was gel purified using a MEGAquick-spin Total Fragment 
DNA Purification Kit (iNtRON Biotechnology). The PE2-encoding sequence 
from pCMV-PE2 (Addgene no. 132775) was amplified by PCR using Sol 2× pfu 
PCR Smart Mix (SolGent). The amplicons were assembled with the linearized 
LentiCas9-Blast plasmid using an NEBuilder HiFi DNA Assembly Kit (NEB). The 
assembled plasmid is referred to as pLenti-PE2-BSD.

Oligonucleotide library design. An oligonucleotide pool containing 54,836 pairs 
of pegRNAs and target sequences was synthesized by Twist Bioscience. Each 
oligonucleotide contained the following elements: a 19-nt guide sequence, BsmBI 
restriction site #1, a 15-nt barcode stuffer sequence, BsmBI restriction site #2, the 
RT template sequence, the PBS sequence, a poly T sequence, an 18-nt barcode 
sequence (identification barcode) and a corresponding 43~47-nt wide target 
sequence that included a PAM and an RT template binding region. The barcode 
stuffer was later removed by cleavage with BsmBI, whereas the identification 
barcode (located upstream of the target sequence) allowed individual pegRNA and 
target sequence pairs to be identified after deep sequencing10,11. Oligonucleotides 
that included unintended BsmBI restriction sites in their sequences were excluded.

To test the effect of PBS and RT template length on PE2 efficiency, we prepared 
pegRNAs with 24 combinations of PBS and RT template lengths (six PBS lengths 
(7, 9, 11, 13, 15, 17 nts × four RT template lengths (10, 12, 15, 20 nts) = 24 different 
possibilities) for 2,000 pairs of guide and target sequences, resulting in a total 
of 48,000 (= 24 × 2,000) pairs of pegRNA and target sequences (library 1). The 
pegRNAs were designed to generate a G-to-C transversion mutation at position 
+5 from the nicking site. The 2,000 target sequences were randomly selected 
from human protein-coding genes, at which SpCas9-induced indel frequencies 
were previously measured10, to allow the correlation between SpCas9 and PE2 
efficiencies at identical target sequences to be determined.

We also prepared another library, named library 2, to evaluate the effects of 
editing position, type and length on PE2 efficiencies. We randomly selected 200 
target sequences from the 2,000 target sequences used for library 1 and designed 34 
different templates for each target sequence as follows.

	i.	 The effect of editing position (11 RT templates): The RT templates were 
designed to introduce transversion mutations at positions +1, +2, …, +8, +9, 
+11 and +14 from the nicking site. The lengths of PBS and the RT template 
were fixed at 13 and 20 nts, respectively.

	ii.	 The effect of editing type and length (14 RT templates): The RT templates 
were designed to introduce insertions (inserted sequences = A, G, C, T, AG, 
AGGAA and AGGAATCATG), deletions (1-, 2-, 5- and 10-nt) and single 
base substitutions (all possible 1-nt substitutions) at position +1 from the 
nicking site. The lengths of PBS and the right homology arm of the RT tem-
plate were fixed at 13 and 14 nts, respectively.

	iii.	 The effect of PAM editing (nine RT templates): The RT templates were de-
signed to introduce 2-bp transversion mutations at positions +1 and +2, +1 
and +5, +1 and +10, +2 and +3, +2 and +5, +2 and +10, +5 and +6, +5 and 
+10 and +10 and +11. The lengths of PBS and the RT template were fixed at 
13 and 16 nts, respectively.

Furthermore, we included 36 pairs of pegRNAs and target sequences used in 
the initial prime editing study1 with five unique barcodes per target sequence. This 
set was used to determine the correlation between prime editing efficiencies at 
integrated sequences and endogenous sites. All together, a total of 54,836 pairs of 
pegRNAs and target sequences—consisting of 48,000 (2,000 × 24, for library 1) + 
6,800 (200 × 34, for library 2) + 36 (from the initial prime editing study)—were 
used to create libraries 1 and 2.

Plasmid library preparation. The plasmid library containing pairs of 
pegRNA-encoding and corresponding target sequences was prepared using 
a two-step cloning process: (Step I) Gibson assembly and (Step II) restriction 
enzyme-induced cutting and ligation. Uncoupling between paired guide RNA 
and target sequences during oligonucleotide amplification via PCR is effectively 
prevented by this two-step process33. The multi-step procedure was adapted and 
modified from a previously reported method34.

Step I: Construction of the initial plasmid library containing pairs of 
pegRNA-encoding and target sequences. The oligonucleotide pool was amplified 
via PCR for 15 cycles using Phusion Polymerase (NEB), after which the amplicons 
were gel purified. The Lenti_gRNA-Puro vector (Addgene no. 84752) was digested 
with BsmBI enzyme (NEB) at 55 °C for 6 h. The linearized vector was then treated 
with 1 μl of Quick CIP at 37 °C for 10 min, followed by gel purification. Gibson 
assembly was used to assemble the amplified pool of oligonucleotides with the 
linearized Lenti_gRNA-Puro vector. After column purification, the assembled 
products were transformed into electrocompetent cells (Lucigen) using a 
MicroPulser (Bio-Rad). SOC media (2 ml) was then added to the transformation 
mixture, which was incubated at 37 °C for 1 h. The cells were then spread on 

Luria–Bertani agar plates containing 50 μg ml−1 of carbenicillin and incubated. 
Small fractions of the culture (0.1, 0.01 and 0.001 μl) were separately spread to 
allow determination of the library coverage. Plasmids were extracted from the total 
harvested colonies. The calculated coverage of this initial plasmid library was 113× 
the number of oligonucleotides.

Step II: sgRNA scaffold insertion. The initial plasmid library produced in Step I 
was digested with BsmBI for 8 h, followed by treatment with 1 μl of Quick CIP at 
37 °C for 10 min. The digested product was gel purified after size selection on a 
0.6% agarose gel. The sgRNA scaffold sequence in the pRG2 plasmid (Addgene 
no. 104174) was PCR amplified for 30 cycles using Phusion Polymerase and a 
primer pair with a BsmBI restriction site in each member of the pair. The resulting 
amplicon was digested with BsmBI for at least 12 h and gel purified on a 2% 
agarose gel. The purified insert (10 ng) was ligated with the digested initial plasmid 
library vector (200 ng) using T4 ligase (Enzynomics) at 16 °C for 16 h. The ligation 
products were column purified and electroporated into Endura electrocompetent 
cells (Lucigen). Colonies were harvested, and the final plasmid library was 
extracted. The calculated coverage of the final plasmid library was 785×.

Production of lentivirus. HEK293T cells (4.0 × 106 or 8.0 × 106) were seeded on 
100-mm or 150-mm cell culture dishes containing DMEM. Fifteen hours later, 
the DMEM was exchanged with fresh medium containing 25 μM chloroquine 
diphosphate, after which the cells were incubated for another 5 h. The plasmid, 
psPAX2 (Addgene no. 12260), was mixed with pMD2.G (Addgene no. 12259) 
at a molar ratio of 1.3:0.72:1.64 and co-transfected into HEK293T cells using 
polyethyleneimine. At 15 h after transfection, cells were refreshed with maintaining 
medium. At 48 h after transfection, the lentivirus-containing supernatant was 
collected, filtered through a Millex-HV 0.45-μm low protein-binding membrane 
(Millipore), aliquoted and stored at −80°C. To determine the virus titer, serial 
dilutions of a viral aliquot were transduced into HEK293T cells in the presence of 
polybrene (8 μg ml−1). Both untransduced cells and cells treated with the serially 
diluted virus were cultured in the presence of 2 µg ml−1 of puromycin (Invitrogen). 
When virtually all of the untransduced cells had died, we counted the number  
of living cells in the virus-treated population to estimate the viral titer as previously 
described35.

Generation of the cell library. In preparation for lentivirus transduction, 
HEK293T cells were seeded on nine 150-mm dishes (at a density of 1.6 × 107 cells 
per dish) and incubated overnight. The lentiviral library was transduced into the 
cells at an MOI of 0.3 to achieve >500× coverage relative to the initial number of 
oligonucleotides. The cells were then incubated overnight, after which they were 
maintained in 2 µg ml−1 of puromycin for the next 5 d to remove untransduced 
cells. To preserve its diversity, the cell library was maintained at a count of at least 
3.0 × 107 cells throughout the study.

PE2 delivery into the cell library. A total of 3.0 × 107 cells (from three 
150-mm culture dishes, each containing 1.0 × 107 cells) were transfected with 
pLenti-PE2-BSD plasmid (80 µg per dish) using 80 µl of Lipofectamine 2000 
(Thermo Fisher Scientific) according to the manufacturer’s instructions. The 
culture medium was replaced with DMEM supplemented with 10% fetal bovine 
serum and 20 µg ml−1 of blasticidin S (InvivoGen) at 6 h after transfection. At 4.8 d 
after transfection, the cells were harvested.

Measurement of PE2 efficiencies at endogenous sites. To validate the results 
of the high-throughput experiment, 33 individual pegRNA-encoding plasmids 
were randomly selected from the plasmid library. In preparation for transfection, 
HEK293T cells were seeded on 48-well plates at a density of 5.0 × 104 or 1.0 × 
105 cells per well 16–18 h in advance. Cells were transfected with a mixture of 
the plasmid-encoding PE2 (pLenti-PE2-BSD, 75 ng per 1.0 ×104 cells) and the 
pegRNA-encoding plasmid (25 ng per 1.0 × 104 cells) using 1 µl of Lipofectamine 
2000 or TransIT-2020 transfection reagent per 1,000 ng of DNA according to the 
manufacturer’s instructions. After incubation overnight, the culture medium was 
replaced with DMEM containing puromycin (2 µg ml−1). The cells were harvested 
4.5 d (for Endo-BR1 and Endo-BR2) or 7 d (for Endo-BR3) after the transfection.

Measurement of PE2 efficiencies in HCT116 and MDA-MB-231 cell lines. 
HCT116 and MDA-MB-231 cells were cultured and passaged in DMEM and 
RPMI, respectively, each supplemented with 10% (vol/vol) fetal bovine serum 
at 37 °C in the presence of 5% CO2. To generate PE2-expressing cell lines, the 
PE2-encoding lentiviral vector was transduced into HCT116 and MDA-MB-231 
cells at an MOI of 0.3 in culture medium containing 8 μg ml−1 of polybrene. After 
an overnight incubation, the cells were cultured in the presence of 10 μg ml−1 of 
blasticidin S for 7 d to remove untransduced cells.

Seventy-five plasmids, each containing a pair of pegRNA-encoding and 
corresponding target sequences, were randomly selected from plasmid library 1;  
plasmid identity was determined by Sanger sequencing (Supplementary Table 5).  
A small lentiviral library was then generated from this pool of plasmids as 
described above. The PE2-expressing HCT116 and MDA-MB-231 cells were 
seeded on six-well plates at a density of 2.0 × 105 cells per well, incubated overnight 
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and transduced with the lentiviral library. After incubation overnight, the culture 
medium was replaced with DMEM containing 1 μg ml−1 of puromycin and 10 μg 
ml−1 of blasticidin S or RPMI containing 2 μg ml−1 of puromycin and 10 μg ml−1 of 
blasticidin S for the HCT116 and MDA-MB-231 cell lines, respectively. At 4.5 d 
after the transduction, the cells were harvested and analyzed.

Deep sequencing. Genomic DNA was extracted from harvested cells with a 
Wizard Genomic DNA Purification Kit (Promega). For our high-throughput 
experiment, integrated barcodes and target sequences were PCR amplified using 
2× Taq PCR Smart Mix (SolGent). For each cell library, the first PCR included a 
total of 400 μg of genomic DNA; given an assumption of 10 μg of genomic DNA per 
106 cells, coverage would be more than 700× over the library. Eighty independent 
50-µl PCR reactions were performed with an initial genomic DNA concentration 
of 5 µg per reaction, after which the products were pooled and gel purified with a 
MEGAquick-spin Total Fragment DNA Purification Kit (iNtRON Biotechnology). 
Then, 100 ng of purified DNA was amplified by PCR using primers that included 
both Illumina adaptor and barcode sequences (Supplementary Table 6). For 
measuring PE2 efficiencies at endogenous sites, the independent first PCR was 
performed in a 40-µl reaction volume that contained 200 ng of the initial genomic 
DNA template per sample. The second PCR to attach the Illumina adaptor and 
barcode sequences was then performed using 20 ng of the purified product from 
the first PCR in a 30-µl reaction volume. After gel purification, the resulting 
amplicons were analyzed using HiSeq or MiniSeq (Illumina). The PCR primers are 
shown in Supplementary Table 6.

Analysis of prime editing efficiencies. For analysis of deep sequencing data, we 
used in-house Python scripts (Supplementary Code 1) that were derived from 
previously used code6. Each pegRNA and target sequence pair was identified via 
a 22-nt sequence (the 18-nt barcode and 4-nt sequence located upstream of the 
barcode). The reads containing the specified edits without unintended mutations 
within the wide target sequence were considered to represent PE2-induced 
mutations. To exclude the background prime editing frequency originating from 
array synthesis and PCR amplification procedures, we subtracted the background 
prime editing frequency determined in the absence of PE2 from the observed 
prime editing frequencies as shown below.

¼

Read counts with intended edit and specified barcode
� Total read counts with specified barcodeð
´ background prime editing frequencyÞ  100
Total read counts with specified barcode
� Total read counts with specified barcodeð
´ background prime editing frequencyÞ  100

´ 100

Deep sequencing data were filtered to improve the accuracy of our analysis. 
pegRNA and target sequence pairs for which the deep sequencing read counts 
were below 200 or the background prime editing frequencies were above 5% were 
excluded as we similarly performed previously6,8,10,11.

Generation of data subsets for machine learning. PE2 efficiencies data obtained 
using library 1 were split into HT-training and HT-test by stratified random 
sampling such that the same target sequences were never shared between the 
two data sets (Supplementary Table 4). Similarly, PE2 efficiencies data obtained 
using library 2 were split into Type-training, Type-test, Position-training and 
Position-test such that the same target sequences were never shared between the 
training and test data sets (Supplementary Table 5). The target sequences used 
for the generation of data sets Endo-BR1, Endo-BR2, Endo-BR3, HCT-BR1, 
HCT-BR2, MDA-BR1 and MDA-BR2 were included in the corresponding test data 
sets to prevent the target sequences from being shared between the training and 
test data sets.

Conventional machine learning-based model training. Seven models were 
trained based on conventional machine learning algorithms—that is, XGBoost, 
gradient-boosted regression tree, random forest, L1-regularized linear regression, 
L2-regularized linear regression, L1L2-regularized linear regression and support 
vector machine (SVM). We used the XGBoost Python package (version 0.90)36 
and scikit-learn (version 0.19.1)37 for all other models. A total of 1,766 features 
were extracted from the wide target sequences and the PBS and RT template 
sequences. The features included position-independent and position-dependent 
nucleotides and dinucleotides, melting temperature, GC counts, the minimum 
self-folding free energy5,10 of the wide target sequence, the PBS and RT template 
sequences and the DeepSpCas9 score10. The melting temperature was calculated by 
a program (https://biopython.org/docs/1.74/api/Bio.SeqUtils.MeltingTemp.html) 
using a default setting without considering the cellular nuclei milieu. For model 
selection among the regularization parameters and hyperparameter configurations, 
we performed five-fold cross-validation. For XGBoost and gradient-boosted 
regression tree, we searched over 144 models chosen from the following 
hyperparameter configurations: the number of base estimators (chosen from [5, 
10, 50, 100]), the maximum depth of the individual regression estimators (chosen 
from [5, 10, 50, 100]), the minimum number of samples to be at a leaf node 

(chosen from [1, 2, 4]) and learning rate (chosen from [0.05, 0.1, 0.2]). For random 
forest, we searched over 144 models chosen from the same hyperparameter 
configurations listed above for XGBoost, except for the learning rate; we searched 
over the maximum number of features to consider when looking for the best split 
(chosen from [all features, the square root of all features, the binary logarithm of 
all features]). For L1-, L2-, and L1L2-regularized linear regression, to optimize the 
regularization parameter, over 144 points that were evenly spaced between 10−6 and 
106 in log space were searched. For SVM, we searched over 144 models from the 
following hyperparameters: penalty parameter C and kernel parameter γ, 12 points 
that were evenly spaced between 10−3 and 103.

Evaluation of feature importance. To measure feature importance for predicting 
PE2 efficiencies, the Tree SHAP method20 was used. We extracted features and 
trained XGBoost models with the best hyperparameter configurations determined 
from five-fold cross-validation as described above. In the Tree SHAP method, a 
per-sample importance score is assigned to each feature from the trained XGBoost 
models. The importance score, which represents the effect of the feature on the 
base value in the model output, is computed on the basis of a game theoretic 
Shapley value for optimal credit allocation20. We show SHAP value distributions for 
the entire data set or provide the mean absolute value to give a general overview of 
feature importance in our model.

Development of deep learning-based algorithms. DeepPE is a deep 
learning-based computational model that predicts the optimal combination of PBS 
and RT template lengths to introduce a G-to-C transversion mutation at position 
+5 from the nicking site. We used the training data set that consists of the prime 
editing efficiencies induced by PE2 and 38,692 pegRNAs; these training data 
contained the 47-nt-wide target sequences, the 17~37-nt RT template plus PBS 
sequences and 20 additional features, including melting temperature, GC counts, 
GC contents and minimum self-folding free energy. The nucleotide sequences were 
converted into four-dimensional binary matrixes by one-hot encoding.

DeepPE was developed using a convolutional layer and a fully connected 
layer. The convolution layer obtained two embedding vectors from the wide target 
sequences and RT template plus PBS sequences using ten filters at 3 nt in length. 
Then, the embedding vectors were concatenated with the 20 biological features. 
The pooling layer was excluded as the deep reinforcement learning algorithm 
was implemented to maintain local information38. The fully connected layer 
with 1,000 units multiplied the vectors with the rectified linear unit activation 
function. The regression output layer performed a linear transformation of the 
outputs and calculated the prediction scores for PE2 efficiency. After testing nine 
different models (hyperparameters; number of filters (10, 20, 40) and units (200, 
500, 1,000) for the convolutional layer and fully connected layer, respectively), we 
chose the model that resulted in the highest Spearman’s correlation coefficients 
between the experimentally measured and predicted activity levels during the 
five-fold cross-validation. Dropout was used to avoid overfitting with a rate of 0.3. 
The mean squared error, as the objective function, and an Adam optimizer with 
a learning rate of 10–3 were used. DeepPE was implemented using TensorFlow39. 
DeepPE is provided as Supplementary Code 2.

For the development of deep learning-based algorithms to predict PE2 
efficiencies for various editing types and positions, we used multilayer perceptron 
(MLP) instead of a convolutional neural network, because an initial trial using 
a convolutional neural network showed poor performance. We have performed 
cross-validations to select among 18 MLP models that have similar architectures 
and number of parameters as DeepPE but lack the convolutions. The considered 
hyperparameter configurations were as follows: the number of layers (chosen 
from [2, 3]), the number of units in each hidden layer (chosen from [1,000, 200, 
50] for the first hidden layer and [50] for the second hidden layer), the dropout 
regularization parameter, the learning rate (chosen from [0.01, 0.001, 0.0001]) and 
the ReLU activation function.

Statistics and reproducibility. To compare prime editing efficiencies between 
experiments using different pegRNAs, we used a one-way analysis of variance 
(ANOVA) followed by two-sided Tukey’s post hoc test. To compare the Spearman’s 
correlation between prediction scores from prediction models (Fig. 3 and 
Supplementary Fig. 21), we used a two-sided Steiger’s test, which is a method 
for testing two dependent correlation coefficients from exactly the same data 
set. A chi-square test was performed to determine the relationship between PBS 
lengths and RT template lengths when the most efficient combination of these 
two parameters per target sequence was selected. For increased accuracy of the 
chi-square analysis, target sequences that showed a prime editing efficiency lower 
than 10%, even when the most efficient combination of the two parameters was 
selected, were filtered out from the analysis. To compare the PE2 efficiencies for 
pegRNAs with PBS and RT template lengths that were chosen using DeepPE versus 
the initial study’s recommendation at given target sequences, we used a two-tailed 
paired t-test. To determine statistical significance, we used GraphPad Prism 8, 
PASW Statistics (version 18.0, IBM) and Microsoft Excel (version 16.0, Microsoft 
Corporation). For high-throughput evaluation of PE2 efficiencies using libraries  
1 and 2, we combined the data from the two replicates independently transfected 
by two different experimentalists.
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Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The deep sequencing data from this study have been submitted to the National 
Center for Biotechnology Information Sequence Read Archive under accession 
number PRJNA624815. The data sets used in this study are provided as 
Supplementary Tables 3, 4 and 5.

Code availability
Source codes for DeepPE and the custom Python script used for the prime editing 
efficiency calculations are provided as Supplementary Codes 1 and 2 and are also 
available at https://github.com/hkimlab-PE/PE_SupplementaryCode.
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