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ABSTRACT: Although numerous studies have been conducted to develop wearable
strain sensors with high sensitivity and a wide detection range, developing strain sensors
with tunable sensitivity for practical purposes remains challenging. Strain sensors with
tunable sensitivity have great potential in applications such as human motion detection
and health monitoring. This paper introduces strain sensors that adopt zigzag-patterned
carbon nanotube (CNT) bundle arrays embedded in a polymer matrix. Owing to the
zigzag pattern, the sensors exhibited an extensive detection range up to 500% strain and
high sensitivity (gauge factor of 64.08). In this study, the CNT bundle array synthesized
on a Si wafer was transferred to a silicone elastomer substrate using a roll-transfer
technique, forming a sheet-like structure of overlapped CNT bundles. The separation
occurring between the CNT bundles with the applied strain followed the shape of the
zigzag pattern. The sensors exhibited excellent repeatability and durability with negligible
hysteresis behavior, and their sensitivity was tunable based on the pattern design.
Furthermore, this study investigated the sensing mechanism of the sensors and their
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potential use in wearable electronics.
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B INTRODUCTION

Flexible and stretchable electronic devices have received
considerable attention for their wide application areas such
as flexible displays,"” soft robotics,”* health monitoring,> and
human—machine interfaces.””” Stretchable strain sensors are
particularly important because of their use in wearable devices
for health monitoring or human motion detection.'’™"* For
use in these applications, strain sensors require high sensitivity
and a wide detection range.'® For instance, vital signs such as
blood pressure, pulse rate, and respiratory rates cause subtle
physical movements, and therefore, strain sensors with high
sensitivity (gauge factor (GF) >20; GF is defined as the
relative change in resistance per unit strain) are needed to
monitor these health-related conditions.'” In addition, strain
sensors with a broad sensing range (>100%) are desired to
measure extensive body motions, including bending and
straightening of joints.'* Because conventional strain gauges
are composed of metal foils or semiconductors, their
brittleness and rigidity limit their flexibility, which renders
them unsuitable for such health-monitoring applications."*"”
Recently, flexible strain sensors have been developed by
integrating conductive nanomaterials such as metal nano-
wires,”" ™ metal nanoparticles,zz*’25 graphene,m_29 and carbon
nanotubes (CNTs)**™*® with elastomers. Despite their
achievements, developing sensors that simultaneously satisfy
both the requirements (high sensitivity and a broad detection
range) remain challenging.'®** For example, a crack-based
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sensor comprising a thin Pt film deposited on a polymer
exhibited an extremely high GF (over 2000); however, it had a
limited working range (0—2% strain).”* In another study, a
highly stretchable strain sensor comprising aligned CNT fibers
and a prestrained flexible substrate achieved a strain range up
to 900%,”° while its GF was less than 1 for the strain range of
0—400%. Likewise, there is a trade-off between the sensitivity
and detection range of the sensor, which limits its application
in wearable sensors.'"'” Therefore, it is necessary to develop
strain sensors with an appropriate sensing range and sensitivity
for different target applications.

Numerous studies were conducted to adjust the sensitivity
or sensing range of strain sensors to meet the requirements of
wearable applications.”” " For instance, the strain sensitivity
of the sensors was effectively tuned by customizing the
composition of conductive polymer composites.33_35 A strain
sensor based on a multiwalled CNT (MWCNT)/polymer fiber
with tunable sensitivity (GF 25—160) by varying the content
of the MWCNT was reported.”” Sensitivity tuning of strain
sensors was also achieved by employing microscopic
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Figure 1. (a) Schematic of the fabricated strain sensor. (b) Optical images of the fabricated sensor at unstretched and stretched states. (c)
Schematics of the fabrication process of the proposed sensor. (d) SEM images of the zigzag-patterned CNT bundle array synthesized on a Si wafer
before the roll-transfer process. (¢) SEM image of the patterned CNT bundle array after the roll-transfer process. The CNT bundles overlap with

adjacent bundles, forming a sheet-like structure.

morphology and structure effects on the sensor.”’ >’ For
example, GFs of 3D printed graphene/polymer composite
strain sensors were controlled by varying the filament thickness
or its porous structure.’”** Although these studies achieved
the tunable sensing performance of strain sensors, they
involved a time-consuming adjustment of fabrication pro-
cesses. Therefore, strain sensors with a simple design and
scalable fabrication process are needed.

Here, we introduce a highly stretchable strain sensor with
tunable sensitivity and a strain range up to 500%. The sensor
consists of a zigzag-patterned CNT bundle array embedded in
a polymer matrix. The CNTs were synthesized on a silicon
wafer by a chemical vapor deposition (CVD) method and then
transferred to an Ecoflex substrate by a roll-transfer process to
form a sheet-like structure.*”*' The sensor sensitivity was
tuned by varying the pattern designs of the CNT bundle
arrays, and multiple sensors with differently tuned sensitivities
were obtained in a single fabrication process. Based on the
pattern design, the fabricated sensor exhibited an adjustable
GF ranging between 0.51 and 64.08. In addition, an extensive
detection range was achieved owing to the zigzag pattern. The
sensor showed negligible hysteresis behavior along with
excellent repeatability and durability against a cyclic strain.
We also studied the sensing mechanism of the sensor based on
zigzag patterns of the CNT bundle array and the overlapped
area between the adjacent CNT bundles. We successfully
measured both subtle movements, such as wrist pulses, and
extensive motions, such as joints bending, to demonstrate
potential use of strain sensors in wearable electronics.

B RESULTS AND DISCUSSION

Design and Fabrication. A schematic of the proposed
strain sensor is illustrated in Figure la. The sensor consists of a
zigzag-patterned CNT bundle array transferred to and
embedded in the Ecoflex matrix. Once the array is transferred,
CNT bundles overlap with one another while maintaining the
zigzag pattern. With the applied tensile strain, the overlapped
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area is reduced, creating a gap between the CNT bundles.
However, both ends of the CNT bundles retain the overlapped
regions with adjacent bundles even under large deformations
owing to the zigzag pattern design. Figure 1b shows optical
images of the fabricated sensor under unstretched and
stretched conditions.

For sensor fabrication, a patterned CNT bundle array was
first synthesized on a Si wafer by the CVD process (Figure 1c).
A catalyst (Fe) for the CNT synthesis was deposited on the Si
wafer and patterned with the photolithography and lift-off
processes. Figure 1d shows the scanning electron microscopy
(SEM) image of the synthesized CNT bundle array viewed
from a tilted angle. It confirms a well-defined zigzag pattern of
the CNT bundle array, as designed in the catalyst patterning
step. The synthesized CNT bundle array was then transferred
to an Ecoflex substrate using a roll-transfer technique,*”*" as
shown in the SEM image of Figure le. The CNT bundles lay
down and get overlapped with the adjacent bundles due to the
force applied by the roller while maintainin§ their zigzag
patterns (Figure S1, Supporting Information).””*’ After the
electrical wires were connected to the transferred CNT bundle
array using a colloidal silver liquid, the CNT/Ecoflex
composite was encapsulated by pouring liquid Ecoflex mixture
followed by curing at room temperature. Owing to the
scalability of the manufacturing methods, CVD of vertically
aligned CNTs** and roll-transfer technique,*”*> multiple
sensors with different pattern designs (sensitivity determining
factor) could be fabricated in a single process. (Figure S2,
Supporting Information).

Strain-Sensing Characteristics. To investigate strain-
sensing characteristics of the sensor, the electrical resistance of
the sensor with 6 = 2.30° was measured while varying the
applied strain. Here, 0 refers to the angle of the inclined lines
in the zigzag pattern (Figure S3, Supporting Information). The
experimental setup is illustrated in Figure S4 (Supporting
Information). Figure 2a depicts the relative resistance change
of the sensor (AR/R,) for various strain values, where AR
represents the change in the resistance of the sensor induced
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Figure 2. Strain-sensing characteristics of the proposed sensor. (a) Relative resistance changes of the sensor for varying strain values. (b) I-V
curves of the sensor for various strain values. (c) Magnified plot of the I-V curves. (d) Dynamic sensor response to repeated strain values of 80, 60,
and 40%. (e) Relative resistance changes of the sensor during stretch (black) and release (red) for up to 150% strain. (f) Response of the sensor to
repeated strain values of 20% at various strain rates. (g) Sensor response to 100% cyclic strain repeated for 1000 cycles. The insets show the sensor

response for five consecutive cycles in the 100th and 900th cycle.

by the application of strain and R; is the sensor resistance
before elongation. It can be seen that the value of the relative
resistance change increases with the applied strain, and the
sensing curve indicates three linear regions: 0—40% (r* ~
0.91), 40—200% (r* = 0.99), and 200—500% (r* ~ 0.97). The
sensor exhibited GFs of 1.81, 39.45, and 8.90 for the strain
regions of 0—40, 40—200, and 200—500%, respectively. Figure
SS indicates that the sensor is extremely stretchable with strain
up to 500%. Figure 2b,c shows that the I—V curves exhibit a
linear response for strain values ranging between 0 and 500%,
confirming the stable electrical contact of the sensor. We also
examined the sensor response to repeated cycles of 80, 60, and
40% strain (Figure 2d). The output responses were highly
consistent, justifying the reliability and repeatability of the
sensor. Figure 2e shows that the sensor exhibits negligible
hysteresis behavior at the relative resistance change corre-
sponding to the strain range of 0—150%. Hysteresis behavior at
large strain levels can be attributed to the viscoelasticity of
Ecoflex and the low interfacial adhesion between the CNTs
and elastomer matrix,***’ which can be resolved by
introducing proper adhesive materials."® We further inves-
tigated the influence of strain rates (3, 6, 12, 30, and 60 mm/
min) on the sensing properties at a cyclic strain of 20% (Figure
2f). The resistance changes were uniform, indicating the
stability of the sensor with respect to the strain rate. Finally, to
evaluate the sensor’s reliability for practical applications, the
dynamic durability and response time of the sensor were
examined. A cyclic strain of 100% was applied for over 1000
cycles to assess the durability of the sensor (Figure 2g). The
sensor maintained a stable response without a measurable
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indication of degradation. A 10% strain applied to the sensor at
a high strain rate (100 mm/s) (Figure S6, Supporting
Information) led to the response time of approximately 56
ms, which was comparable to that of state-of-the-art strain
sensors. "’

Sensing Mechanism. We performed a finite element
method (FEM) analysis to verify the sensing mechanism of
strain sensors. Note that the current path changes character-
istically with increased strain, as shown in Figure S7
(Supporting Information). Figure 3a illustrates how the current
path changes as the strain is induced. Typically, the resistance
(R) of a given object is expressed as R = p(I/A), where p is the
electrical resistivity, [ is the length, and A is the cross-sectional
area of the conductor (or a resistor). In the small strain range
where only sliding between adjacent CNT bundles occurred,
the resistance changed slightly owing to the elongation of the
active length (!) of the conduction path. With the continuously
applied strain, the CNT bundles began to partially separate,
reducing the active cross-sectional area of the current path and
consequently increasing the sensor resistance. The zigzag
pattern caused the gradual separation of CNT bundles. When
adjacent CNT bundles were separated beyond the midpoint,
the total length () of the current path increased significantly
along the zigzag pattern until only the ends of the CNT bundle
were left overlapping. Also, the width of the cross-sectional
area A is reduced to the length of the CNT bundle width,
which is defined by the length of the synthesized CNTs. This
drastically increased the resistance for the maximum GF of the
sensor (strain region of 40—200% in Figure 2a). However, the
overlapped portions of both ends of the CNT bundles
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Figure 3. Strain-sensing mechanism of the sensor. (a) Schematics
illustrating the change in morphology of the overlapped CNT bundles
as strain increases. The CNT bundles separate, forming the zigzag
pattern. (b) Optical images of the sensor at various strain values,
when stretched up to 400% strain and then released (scale bar: 1
mm).

remained overlapped even for a very large (~500% strain)
applied strain. This can be attributed to the spatially
nonuniform elastic properties of heterogeneous composites
that result in varying local strain at specific locations depending
on the elastic modulus.'”** Because Young’s modulus values of
CNTs (270—-950 GPa)** are several orders of magnitude
higher than that of Ecoflex (~0.1 MPa),”>*° the area
containing the CNT bundles has a higher local modulus of
elasticity than the area consisting of Ecoflex only. Thus, a
relatively small amount of local strain was induced where the
overlapped CNT bundles were located.

Figure 3b shows optical images of the morphology of the
transferred CNT array for different strain values to validate the
sensing mechanism. In the initial state where no strain was
applied, CNT bundles overlapped with one another forming a
sheet-like structure. As the sensor was stretched to 30% strain,
partial separation occurred between the adjacent bundles.
Under larger strain values, the CNT bundles were
disconnected, except at the edges, where they maintained
their positions and the overlap forming a zigzag pattern. In
contrast to our previous work, wherein we used a parallel line
pattern resulting in a relatively narrow sensing range induced
by the electrical disconnection of CNT bundles,” the applied
zigzag pattern allowed for the measurement of a wide strain
range. Upon release, the separated CNT bundles retained their
initial positions, restoring the electrical resistance.

The sensing mechanism of the proposed sensor is different
from that of a randomly distributed CNT—polymer composite-
based strain sensor. In the case of randomly distributed CNT-
polymer composites, the resistance change was mainly due to
the decrease in the number of CNT—CNT contacts, and this
change was more severe near the percolation threshold.”” The
disconnection between CNTs sharply increased the resistance
leading to a strain range with the highest GF, but only over a
short strain interval just before the sensor reached an insulating
state.”® This sudden increase in resistance just before the
electrical disconnection of the sensor makes it difficult to
operate the sensor in the most sensitive strain ranges suitable
for various applications. However, by utilizing our proposed
strain sensor, the sensor can be designed to have the highest
GF in the strain range for use in the desired applications.

Sensitivity Tuning. To investigate the effect of the pattern
shape on the sensor sensitivity, we designed zigzag patterns
with different angles (0: 1.15, 2.30, 2.86, and 3.45°) between
the nearby CNT bundles (Figure 4a,b). The CNT length was
approximately 300 um for all the four pattern designs. Details
of the designs are illustrated in Figure S3 (Supporting
Information). Depending on 6, the overlapped area between
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Figure 4. (a) Top- and (b) side-view SEM images of the CNT bundle array with varying 6 values, before the roll-transfer process. (c) Relative
resistance changes of the sensors with different 0 values under the applied strain. (d) Strain-sensing responses of the sensors fabricated with
different pattern designs. (e) Maximum GF exhibited by the sensors designed with different € values of 1.15, 2.30, 2.86, and 3.45°.
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Figure 5. Applications of the sensor for human motion detection. (a) Sensor response to wrist pulses. (b, c) Relative resistance changes of the

sensor to (b) finger and (c) elbow motion at various degrees of bending.

CNT bundles varied, allowing for the fabrication of sensors
with different degrees of separation between the bundles at a
given strain. Because the strain-induced resistance change of
the sensor is primarily due to the separation of the CNT
bundles and the change in current path geometry (Figure
3a),*”*®% the strain-sensing performance could be adjusted
with a simple modification of 6.

Figure 4c,d depicts the sensor response under various strain
conditions for each pattern design. The sensor with 6 = 1.15°
exhibited the highest GF (64.08), followed by 8 = 2.30° (GF ~
40.23). However, sensors with @ values of 2.86 and 3.45°
showed relatively low GFs: 4.89 and 0.51, respectively (Figure
4e). This can be attributed to the high initial resistance of the
sensors due to the less overlapped area (Figure S8, Supporting
Information), and the smaller amount of separation occurred
between the CNT bundles at a given strain value.

With respect to the sensing range, sensors with 6 values of
1.15 and 2.30° could detect up to 500% strain, while sensors
with @ values of 2.86 and 3.45° exhibit a relatively narrow
detection range. This is because sensors with a large 6 have a
small overlapped area of CNT bundles; thus, a large
deformation separates adjacent CNT bundles even at their
ends, causing an electrical disconnection of the sensor (Figure
S9, Supporting Information). Nevertheless, we can design our
sensors to have GFs in the range of 0.51 to 64.08 with a
maximum detection range of 500% strain. This is a highly
sensitive sensor with an extensive sensing range compared with
state-of-the-art conductive nanomaterial—polymer composite-
based strain sensors (Figure S10 and Table S1, Supporting
Information).

Applications. The fabricated sensor was demonstrated to
be a wearable device for human motion detection (Figure ).
High sensitivity and stretchability of the sensor enabled the
measurement of a wide range of human motions, from subtle
movements, such as wrist pulses, to extensive movements, such
as joint bending motion. The sensors were attached to the
subject’s skin using a commercial medical tape, and the
electrical output signals were monitored during these physical
movements. As shown in Figure 5a, the wrist pulse signals can
be clearly measured, with the ability to distinguish the
characteristic waveforms such as percussion, tidal, and diastolic
waves. Considering that one’s physical condition can be
extracted from monitoring physiological responses,'” the
sensor could also be used in the diagnostic or rehabilitation
applications. For extensive motion detection, the sensor was
attached to the subject’s finger and elbow, and the signal was
measured according to the joint movements. Figure 5b,c shows
that the sensor can distinguish the degree of bending by
monitoring the corresponding change in relative resistance.
The proposed sensor can successfully detect both subtle and
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extensive human motions, indicating its potential use in various
applications.

B CONCLUSIONS

We introduced highly stretchable and sensitive strain sensors
based on zigzag-patterned CNT bundle arrays. A roll-transfer
process was used to transfer the CNT bundles to the silicone
elastomer while maintaining the array pattern design. We
found that the sensor sensitivity can be tuned by varying the
zigzag pattern design, which enabled the sensors to have GF
values from 0.51 to 64.08. We used a scalable fabrication
process to demonstrate that strain sensors with differently
tuned sensitivities can be obtained in a single manufacturing
process. The sensors exhibited excellent strain sensing
performance including an extensive detection range up to
500% strain, outstanding repeatability, negligible hysteresis,
and durability. When used as a wearable sensor for human
motion detection, the sensors successfully measured both
subtle and extensive physical motions, demonstrating their
potential for use in diagnostic, rehabilitation, and health-
monitoring applications.

B EXPERIMENTAL SECTION

Synthesis of Zigzag-Patterned CNT Bundle Arrays. A zigzag-
patterned CNT bundle array was synthesized on a Si wafer by CVD.
First, a 3 nm-thick e-beam evaporated Fe catalyst layer was selectively
deposited on a Si wafer by the lift-off process using a negative
photoresist (DNR-L300; Dongjin Semichem Inc.). After heating the
sample to 720 °C under the flow of 100 sccm nitrogen (N,), it was
treated with 100 sccm ammonia (NH,) for 30 min. The CNT growth
process was carried out for 15 min using 30 sccm acetylene (C,H,) as
a precursor. Then, the sample was cooled down to room temperature
in N,.

Sensor Fabrication. The Ecoflex (00—30, Smooth-on) substrate
was obtained by mixing the prepolymer and cross-linker at 1:1 wt %,
followed by degassing in vacuum for 10 min. Next, 10 mL of this
liquid Ecoflex was poured into a 125 mm X 125 mm square Petri dish
and cured overnight. The as-synthesized patterned CNT bundle array
was then transferred to the cured Ecoflex film by a roll-transfer
technique as described in our previous work.*® Electrical wires were
connected to the transferred CNT array using a colloidal silver liquid
(Pelco; Ted Pella, Inc.). Then, liquid Ecoflex (mixture of the
prepolymer and cross-linker at 1:1 wt%) was poured onto the CNT/
Ecoflex composite and cured at room temperature for encapsulation.

Characterization. A field emission scanning electron microscope
(JEOL; IT-S00HR) was used to characterize the surface morpholo-
gies of the CNT bundle arrays. Strain was applied to the sensor using
a motorized linear stage (Cheung Won Mechatronics Co., South
Korea) for the strain rates above 1 mm/s and a dip coater (Jaesung
Engineering Co., South Korea) for the strain rates below 1 mm/s. The
electrical response was measured using a sourcemeter (Keithley
2614B) under an applied voltage of 1 V.

https://dx.doi.org/10.1021/acsanm.0c02494
ACS Appl. Nano Mater. 2020, 3, 11408—11415


http://pubs.acs.org/doi/suppl/10.1021/acsanm.0c02494/suppl_file/an0c02494_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsanm.0c02494/suppl_file/an0c02494_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsanm.0c02494/suppl_file/an0c02494_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsanm.0c02494/suppl_file/an0c02494_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02494?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02494?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02494?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.0c02494?fig=fig5&ref=pdf
www.acsanm.org?ref=pdf
https://dx.doi.org/10.1021/acsanm.0c02494?ref=pdf

ACS Applied Nano Materials

www.acsanm.org

Finite Element Method Analysis. Three-dimensional modeling
and FEM analysis were carried out using a commercial 3D CAD
program (Creo Parametric 5.0) and FEM software (ANSYS
Workbench 18.2), respectively. Because the purpose of the simulation
was to simply verify the current flow pattern according to the
morphology of the sensing area, we assumed each CNT bundle as a
simple bulk conductor. Structural steel was selected for the material
from the ANSYS Workbench library. A potential difference of 1 V was
applied across both ends of the model to measure the current density.
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