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and strain) electronic skin devices, which 
showed continuously improving perfor-
mance over the years.[6–10] However, tactile 
sensing technology alone is insufficient to 
enable the aforementioned applications, 
where the processing of acquired signal 
is also of critical importance.[1–3,11] In fact, 
only when tactile sensing technology is 
combined with the correspondingly fitting 
signal processing technology, will various 
devices be able to perceive and interact 
with the environment, and hence be able 
to “feel like a human.”[5] In this regard, 
one could learn and gain inspiration from 
the human somatosensory system, which 
is a system of receptors, sensory neurons, 
and synaptic pathways, through which 
our body receives and processes tactile 
information.[12–17] Our somatosensory 
system has the following interesting fea-
tures to consider in terms of tactile signal 
processing (Figure  1a). First, the tactile 
inputs from stimulated receptive fields are 
simultaneously received and transmitted 
via primary sensory neurons. Second, at 

the spinal cord or medulla, the neighboring primary sensory 
neurons are grouped such that the signals are combined and 
transmitted as a single output signal to the secondary neuron. 
Interestingly, the combined signal has the necessary informa-
tion encoded, such that we are able to differentiate the location 
and type of stimuli. The secondary neurons carry the signal to 

Inspired by the human somatosensory system, pressure applied to multiple 
pressure sensors is received in parallel and combined into a representative 
signal pattern, which is subsequently processed using machine learning. The 
pressure signals are combined using a wireless system, where each sensor 
is assigned a specific resonant frequency on the reflection coefficient (S11) 
spectrum, and the applied pressure changes the magnitude of the S11 pole 
with minimal frequency shift. This allows the differentiation and identifica-
tion of the pressure applied to each sensor. The pressure sensor consists of 
polypyrrole-coated microstructured poly(dimethylsiloxane) placed on top of 
electrodes, operating as a capacitive sensor. The high dielectric constant of 
polypyrrole enables relatively high pressure-sensing performance. The coils 
are vertically stacked to enable the reader to receive the signals from all of 
the sensors simultaneously at a single location, analogous to the junction 
between neighboring primary neurons to a secondary neuron. Here, the 
stacking order is important to minimize the interference between the coils. 
Furthermore, convolutional neural network (CNN)-based machine learning 
is utilized to predict the applied pressure of each sensor from unforeseen 
S11 spectra. With increasing training, the prediction accuracy improves (with 
mean squared error of 0.12), analogous to humans’ cognitive learning ability.
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Electronic skin has been a rapidly advancing field of research 
over the past several decades. Electronic skin are devices that 
mimic the tactile sensing properties of human skin, which can 
be utilized in applications like wearable electronics, robotics, 
and prosthetics.[1–5] Thus far, there have been numerous reports 
on different types and designs of tactile sensing (e.g., pressure 
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a thalamus and connections are made with tertiary neurons via 
synapses. Finally, the tertiary neurons form a neural network 
with the neurons in the somatosensory cortex, which is where 
the processing of tactile information takes place, through which 
we are able to perceive and learn.[18–25]

In recent years, researchers have begun to mimic the 
human somatosensory system, where tactile sensors were com-
bined with artificial synaptic devices, by which multiple tactile  
signals were combined and processed simultaneously.[16,17,26] 
For instance, Lee et  al. made a multi-device system that can 
convert incoming pressure signals into electrical pulses 
using ring oscillators, which was then processed by synaptic 
devices.[16] This system has shown the capability to process 
multiple pressure signals using a synaptic device. However, it  
is not possible to ascertain which pressure sensor a given signal 
is coming from; hence, additional synaptic devices are needed. 
In another report, two pressure sensors were connected to a 
single synaptic device where the signals from both pressure 
sensors were processed simultaneously, and through learning, 
recognition error was progressively reduced.[17] However, as 
pressure sensors connected to a synaptic device increase, it 
will become increasingly complex to differentiate the pressure 
levels of each sensor. In summary, the sensor-synaptic device 
systems are currently limited in processing multiple tactile sig-
nals, as information is lost during processing. Furthermore, 
in these systems, complexity in wiring is an unavoidable issue 
with an increasing number of sensors, which can hinder their 
practical applicability.

In this work, we introduce WiPPCoP (wireless parallel 
pressure cognition platform), which possesses the aforemen-
tioned key features of the somatosensory system (Figure 1b). 
WiPPCoP can wirelessly receive pressure information from 
multiple sensors simultaneously (i.e., in parallel) at a single 
location using vertically stacked 2D coil architecture and 
combine the signals into one representative signal pattern 
(Figure  1c), resembling the connection between the multiple 
primary neurons to a secondary neuron.[18] WiPPCoP was 
designed such that each sensor has a specific resonant fre-
quency pole in the S11 (reflection coefficient) versus frequency 
plot (i.e., S11 spectrum) on the network analyzer, and the vari-
ation in pressure changes the magnitude of the poles with 
minimal shifting of the resonant frequencies. Such a property 
allows the assignment of a frequency to each sensor, through 
which the signal from each sensor can be identified. This 
is on the contrary to other wireless pressure sensors, where 
frequency shifting of the poles was used to detect pressure 
changes.[27–29] Furthermore, since the signal is transmitted 
wirelessly, off-chip wiring is unnecessary. As a means to gen-
erate a cognitive system that mimics the neural network in the 
somatosensory cortex, using convolutional neural network, 
our system has been taught to predict the pressure levels of 
each sensor, given an unforeseen S11 spectrum as an input. 
With increasing training, the accuracy of the predicted output 
pressure values progressively increased, validating the legiti-
macy of our machine-learning algorithm. Our system brings 
forth a new perspective on utilizing wireless system combined 
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Figure 1.  Overall concept of WiPPCoP. a) Illustration of the human somatosensory system. b) Illustration of WiPPCoP on a robotic system. c) Illustra-
tion of WiPPCoP on a robotic hand where tactile signal is received simultaneously, each with a specific frequency. d) Schematic depiction of a closed 
LC resonator on the right, which consists of a 2D coil and lateral electrodes. The left drawing is a depiction of a PDMS substrate that was microstruc-
tured with pyramids and coated with polypyrrole; this substrate was placed on top of the lateral electrodes with the pyramids facing down to form the 
LC pressure sensor. e) Assembling of multiple LC pressure sensors by vertically stacking the 2D coils in ascending order, with the coils with smaller 
number of turns placed closer to the reader.



© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1906269  (3 of 9)

www.advmat.dewww.advancedsciencenews.com

with machine learning to process tactile information. This 
technology can potentially be used to improve the signal 
processing capability of various tactile sensors in the future, 
which is an exciting prospect for prosthetics, robotics, and 
wearable and implantable electronics.

Figure  1d is a schematic of our wireless pressure sensor. 
On the right-hand side of a substrate (either glass or 
poly(lactide-co-glycolic acid)), metal-based (Al or Au) 2D coil 
was patterned in a solution-free manner using vacuum deposi-
tion. On the left-hand side, lateral electrodes composed either 
of Al or Ag nanowires (NWs) were patterned on the glass or 
poly(dimethylsiloxane) (PDMS). On the 2D coil, the polyimide 
insulating layer with a via hole was laminated on top; the via 
hole was aligned to one end of the 2D coil. This end was elec-
trically connected to one of the lateral electrodes with copper 
(the other end of the 2D coil and the other lateral electrode 
were already connected during shadow patterning) to form a 
closed LC resonator. The pressure-sensitive element was made 
first by microstructuring a PDMS substrate with pyramids, 

and the surface of the pyramids was chemically grafted with 
polypyrrole (Ppy), a conductive polymer with a high dielectric 
constant (>10).[30] Then, this substrate was placed on top of the 
lateral electrodes with the pyramids facing down (this will be 
referred to as LC pressure sensor from this point on). A detailed 
fabrication process and schematics are in Figures S1–S3  
in the Supporting Information. Figure  1e is a schematic of 
vertically stacked 2D coils, through which a reader can simul-
taneously receive the signals from multiple sensors at a single 
location, analogous to the junction between primary neurons 
to a secondary neuron.

Figure 2a depicts the layout of the 2D coil on the left, and 
an equivalent circuit on the bottom right. As schematically 
depicted on the top right of Figure  2a, at the resonant fre-
quency (fres) of the closed LC resonator, the electromagnetic 
(EM) wave is stored, resulting in a sharp decrease in the S11 
spectrum. The resonant frequency is related to the inductance 
(L2D) and capacitance (C) of the closed LC resonator by the  
Equation (1)
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Figure 2.  Simulation and experimental results of 2D coil stacking in ascending order. a) 2D coil design, equivalent circuit, and conceptual depic-
tion of the closed LC resonator with a specific resonant frequency. b) Experimental and 3D full-wave EM (3D EM) simulation results of the resonant 
frequencies of different 2D coils with varying number of turns. c) Circuit simulation of S11 spectra of multiple LC resonators with different resonant 
frequencies. d) Top: 3D EM simulation of the transmission coefficients of the 2D coils in a vertically stacked configuration. Bottom: 3D EM simula-
tion of magnetic flux induction of the stacked 2D coils. e) Top view of magnetic field distribution simulation of the stacked coils in ascending order.  
f) Experimentally obtained S11 spectra of different number of stacked LC resonators in ascending order, each of which had a different number of coil turns.  
g) Experimentally obtained S11 spectra of two stacked LC resonators at different relative rotation angles.



© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1906269  (4 of 9)

www.advmat.dewww.advancedsciencenews.com

f
L C

1
2

res
2Dπ

=
	

(1)

The inductance of the 2D coil is related to the number of 
turns (n) and the outer (dout) and inner (din) diameter of the coil 
by the following equation[31]
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Considering Equations  (1) and  (2), the number of turns 
should be inversely proportional to the resonant frequency. 
Such a trend has been verified experimentally and using a 3D 
full-wave EM (3D EM) simulation, as seen in Figure  2b and 
Figure S4 in the Supporting Information. We have conducted 
circuit simulation where signals from 3 LC resonators with dif-
ferent resonant frequencies are received by a reader (Figure 2c). 
As seen in the S11 spectrum on the right side of Figure 2c, each 
LC resonator is assigned a specific frequency. For our experi-
ments, we have used two, three, and six turn 2D coils, which 
has resonant frequency differences of ≈70 MHz.

Vertically stacking the 2D coils can save valuable space on a 
device and the signal can be measured simply using standard 
equipment, which are important features for many different 
applications such as wearable and implantable electronics. To 
the best of our knowledge, the vertically stacked closed LC res-
onator configuration that can read out the signals from mul-
tiple sensors has not been previously reported. Figure  2d top 
is a schematic image of 3D EM simulated transmission coef-
ficients through the 2D coils in a vertically stacked configura-
tion in ascending order (i.e., the 2D coil with a smaller number 
of turns placed closer to the reader). The transmission coef-
ficients of the two, three, and six turn 2D coils were −3.6  dB 
(green), −5.7  dB (blue), −7.7  dB (red), respectively, signifying 
that the EM waves are transmitted to each of the 2D coils with 
minor shielding from the upper coil.[32] Figure 2d bottom and 
Figure S5a in the Supporting Information are 3D EM simu-
lation of magnetic flux induction of the stacked 2D coils in 
ascending and descending (i.e., the 2D coils with a higher 
number of turns placed closer to the reader) order, respectively. 
In the ascending order, higher magnetic flux is induced, indi-
cating less interference and shielding effect between the coils. 
In the descending order, the uppermost coil stores most of the 
EM wave and hinders its propagation; therefore, S11 poles of all 
of the coils merge into one (Figure S5b, Supporting Informa-
tion). These results together verify the importance of stacking 
order of the 2D coils for the differentiation of signal coming 
from multiple sensors. Figure  2e is a top view 3D EM simu-
lated image of magnetic field distribution of the stacked 2D 
coils in ascending order, which reveals that the magnetic field 
is concentrated at the center of the coils. Hence, we were able 
to measure the combined magnetic field through a commercial-
ized reader coil (HZ-15 RSH400-1, Rohde & Schwarz) without 
the need for customized measurement equipment.

Figure  2f is the experimentally obtained S11 spectra of the 
different number of stacked LC resonators in ascending order, 
where each LC resonator had a different number of coil turns 
(two, three, and six turn). With each addition of LC resonator, 
the appearance of an additional S11 pole was observed. The 

minor shifting of the resonance frequencies with the addition 
of S11 pole is due to the mutual inductance between the coils 
(Figure S6, Supporting Information). As mentioned above, the 
two, three, and six turn 2D coils were chosen to yield resonant 
frequency difference of ≈70 MHz, which was needed to differ-
entiate the poles without pole-to-pole interference. The resonant 
frequency difference (∆fres) can be lowered by increasing the Q 
factor, through which the bandwidths (fBW) of the S11 poles can 
be reduced.[33] Figure 2g is S11 spectra of two stacked LC reso-
nators at different relative rotation angles, where no significant 
difference in the plots was observed. Hence, our system poten-
tially has the freedom to configure the LC pressure sensors in 
various orientations.

Figure 3a is a side view schematic of the Ppy-coated micro-
structured PDMS placed on top of the lateral electrodes. The 
left-most plot of Figure 3c is the experimentally attained S11 pole 
of an LC pressure sensor with three turn coil at various applied 
pressures up to 10 kPa. The S11 pole increased with pressure, 
suggesting that the stored EM wave decreased with increasing 
pressure. Meanwhile, there was minimal frequency shifting 
with applied pressure. The left side of Figure 3b is the 3D full-
wave simulation of an LC pressure sensor, where the capaci-
tance between the lateral electrodes was numerically varied as 
4 (blue), 7 (green), 10 (orange) pF by modulating the dielectric 
constant. The simulation also yielded largely increasing S11 
pole with minimal resonant frequency shifting. In our LC reso-
nator, the stored EM wave is concentrated between the lateral 
electrodes. When the effective dielectric constant (εeff) between 
the electrodes increases, the stored EM wave energy decreases. 
This leads to an increase of the S11 pole value (this mechanism 
is further explained in Figure S7, Supporting Information).[33] 
These results suggest that the sensor configuration of Figure 3a 
functions as a capacitive sensor in our system rather than a 
piezoresistive sensor. As pressure is applied, the contact area 
between the Ppy and electrodes increases. The large dielectric 
constant of Ppy causes an increase in the effective dielectric 
constant (εeff) between the lateral electrodes under applied 
pressure, increasing the capacitance (relation between S11 and 
capacitance is analyzed in Figure S8, Supporting Information). 
Figure S9, Supporting Information, is a plot of the change in 
capacitance versus pressure and cycling behavior of our sensor 
measured using an LCR meter, verifying that our sensor works 
as a capacitive pressure sensor. The resistance between the elec-
trodes, however, changes trivially with applied pressure since 
the resistance of Ppy is much larger (≈k Ohms) than that of the 
coil (tens of Ohms) (i.e., since the electrodes are connected by 
the coils and Ppy, the two resistances can be modeled as two 
resistors connected in parallel. In this case, the smaller of the 
two resistors dominates the overall resistance.)

The right side of Figure 3b is a Smith chart, where the blue, 
green, and orange circles represent the capacitance between the 
lateral electrodes of 4, 7, and 10 pF, respectively. The fact that 
the shortest distance from the origin to a point on the surface 
of each circle are all in the same direction (i.e., all overlapping 
in a line) corroborates the small change in resonance frequency 
at various pressures attained in Figure  3b left and Figure  3c 
left.[33] Here, we note that the detection of pressure (or any given 
input) using the change in magnitude has advantages over that 
of using the change in resonance frequency. First, when signals 
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from multiple sensors need to be detected simultaneously, the 
use of frequency shifting can merge the poles during operation, 
rendering it difficult to decouple the individual sensor signals. 
Second, detecting amplitude variation is simple and cost-effec-
tive because it does not need additional complex circuit compo-
nents such as phase locked loop, mixer, and oscillator, which 
are all required for frequency variation detection systems.[34]

As control experiments, we have coated the PDMS pyramids 
with Ag NW, and also used PDMS pyramids without any sur-
face coating. As seen in the middle plot of Figure  3c, the Ag 
NW-based sensor was unable to differentiate pressure levels. 
This can be attributed to the fact that since Ag NW is a metal 
with high conductivity, the capacitor is shorted when contact 
is made with the lateral electrodes, at which the device can no 
longer function as an LC resonator. On the other hand, when 
bare PDMS is used, only slight changes in signal were observed 
since the dielectric constant of PDMS (2.3–2.8) is much lower 
than that of Ppy (>10).[30] Figure 3d is a plot of change in S11 
as a function of pressure for the Ag NW-coated, Ppy-coated, 
and bare PDMS. Evidently, the Ppy-coated PDMS was the most 
suitable for pressure sensing (0.32  dB kPa−1 from 0 to 2  kPa, 
0.039 dB kPa−1 from 2 to 10 kPa).

Figure  4a–c is S11 spectra of three sensor-based WiPPCoP, 
where 2  kPa of pressure was applied to one sensor at a time. 
Apparently, the S11 pole that corresponds to the pressure sensor 
being pressed undergoes a dominant change in magnitude. 
(S11 spectra when pressure up to 10  kPa was applied to each 
sensor are shown in Figure S10, Supporting Information.) 
Figure 4d–f are S11 spectra where 2 kPa of pressure was applied 

to multiple sensors at a time, which also indicates that the mag-
nitudes change correspondingly. These results verify that WiP-
PCoP can detect and differentiate the signal from multiple sen-
sors. We note that when the LC pressure sensors are stacked in 
descending order, all of the S11 poles merged; hence, the sig-
nals from the sensors could not be differentiated (Figure S11, 
Supporting Information).

As mentioned above, even with properly stacked coil con-
figuration, there is mutual inductance between the LC pres-
sure sensors. Looking closely at Figure  4a–f, the S11 poles 
corresponding to unpressed sensors undergo a slight change 
in magnitude. In other words, there is an inevitable cross-
talk between the S11 poles of each sensor. Hence, when pres-
sure needs to be quantified precisely, and especially for small 
changes in pressure, the measurement becomes difficult. To 
overcome this challenge, we have utilized convolutional neural 
network (CNN)-based machine learning, mimicking the cog-
nitive learning ability of our brain (Figure  5a).[35–37] Through 
cognitive learning, we are able to improve the perception (e.g., 
quantification, categorization, spatial differentiation) of tactile 
information and better interact with our surroundings.[38–40] 
Such an ability is also expected to be an important feature 
in humanoid applications, as it will enable them to adapt to 
changes to their surroundings and tasks.[41,42] CNN has connec-
tivity patterns between neurons that resemble the organization 
of the sensory cortex. Analogously to synaptic strengths and 
neural receptive fields of the sensory cortex, CNN consists of  
i) linear operations filtering by a set of weights,[36] ii) a pointwise 
nonlinear operation, called activation, iii) pooling, a nonlinear 

Adv. Mater. 2020, 32, 1906269

Figure 3.  LC pressure sensor characterization and analysis. a) Schematic of the Ppy-coated microstructured PDMS placed on top of the lateral elec-
trodes, working as an effective dielectric constant (εeff) modulating capacitive pressure sensor. b) 3D EM simulation results of an LC pressure sensor, 
where the capacitance between the lateral electrodes was numerically varied as 4 (blue), 7 (green), and 10 (orange) pF. Left side is the S11 spectra 
and right side is the Smith chart. c) S11 pole of different types of sensors under pressure, up to 10 kPa. d) Change in the magnitude of S11 pole as a 
function of pressure for each type of pressure sensor.
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aggregation operation, and iv) normalization to adjust output 
values to a reasonable range.[35] The operations within CNN 
layers can be mapped to cortical areas and organized hierarchi-
cally for deep CNN and sensory cortex model, respectively.[36]

The detailed description of CNN machine learning proce-
dure is available in the Experimental Section in the Supporting 
Information. Briefly stated, a total of 120 data were used, where 

100 of them were used as training data and 20 of them were 
used as test data. Each data was a vector consisting of a column 
of S11 values where pressure levels of varying combinations 
were applied to the three sensors. Figure  5b is the predicted 
pressure of one of the test data (representing an average accu-
racy) after being trained with 100 training data. Evidently, 
our algorithm was able to predict the pressure levels with 
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Figure 5.  Machine-learning-based pressure signal processing. a) Schematic illustration of CNN. b) Predicted pressures applied to each of the sensors 
compared to that of actual pressure applied after training with 100 data. c) Visualization plot comparing the actual pressure levels applied to each 
of the sensors (blue dots) to the predicted pressure levels after training with 10 data (black dots) and 100 data (red dots). d) MSE and error index 
according to the number of training data.

Figure 4.  S11 spectra of three sensor-based WiPPCoP under the application of 2 kPa of pressure to different sensors. The insets indicate which sensor(s) 
were pressed.
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reasonable accuracy. Figure 5c is a visualization plot comparing 
the actual pressure levels applied to each of the sensors (blue 
dots) to the predicted pressure levels after training with 10 data 
(black dots) and 100 data (red dots). Apparently, the accuracy 
of the predicted pressure levels improves with more training. 
Figure  5d is a plot of mean squared error (MSE) and error 
index after training with varying numbers of data. The error 
index is defined as

Error Index
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where Ppred.i and Pact.i are the expected and actual values of the 
pressure levels in vector form (i.e., Ppred or Pact = <P1, P2, P3>, 
where P1, P2, and P3 are pressure levels applied to each of the 
three sensors), Pact,i* is a normalization factor to generate abso-
lute percentage error, and N is the number of samples. Both the 
MSE and error index decrease with increasing training data. 
The MSE and error index after training with 100 data were 0.12 
and 0.09, respectively, which are sufficiently low to suggest a 
high predictive accuracy of our algorithm. When each sensor 
was individually calibrated (i.e., signal pattern was attained by 
applying different levels of pressure to one sensor at a time, 
and the resulting data were used as input training data), the 
error index came out to be 0.24. Hence, the use of signal pat-
tern coming from the simultaneous application of pressure to 
the three sensors as the training data in machine learning was 
important for accurate prediction of pressure levels. We have also 
conducted machine learning on five sensor (2D coils with one, 
two, three, four, and six turn)-based WiPPCoP, which also exhib-
ited decreasing MSE and error index with increasing training. 
After training with 200 data, MSE and error index were 0.27 and 
0.12, respectively (Figure S12, Supporting Information).

Real-time monitoring of pressure levels is essential for many 
tactile sensing applications. WiPPCoP’s ability to simultaneously 
receive and differentiate pressure signals from multiple sen-
sors was utilized to conduct real-time monitoring of pressures 
at different locations, as depicted in Figure  6a (see the Experi-
mental Section in the Supporting Information for details). We 
have also made the LC pressure sensor flexible and placed it on 
a human finger to detect pressure (Figure 6b,c). All of the com-
ponents being passive made it relatively easy to render it flex-
ible (see Figure S13 in the Supporting Information for details of 

the fabrication process, and Figure S14 in the Supporting Infor-
mation for the acquired signal under bending of the sensing 
region). When the distance between the reader and the stacked 
coils was varied, the magnitudes of the S11 poles changed in 
similar proportions (Figure S15, Supporting Information); thus, 
by calibrating the signal at different distances, the pressure 
levels can in principle be analyzed.[43] These are all important 
features in wearable and implantable electronic applications.

Herein, inspired from the human somatosensory system, 
we introduced WiPPCoP, where pressure inputs from mul-
tiple sensors were received in parallel and combined into one 
output signal at a single location using stacked 2D coil archi-
tecture. For minimal interference between the coils, the coil 
with smaller number of turns was placed closer to the reader. 
The stacked architecture saves valuable space on a given 
device, and the signal can be processed in a facile manner 
using a standard reader. The pressure sensor functioned as 
a capacitive sensor, where the applied pressure increased the 
effective dielectric constant between the lateral electrodes. By 
varying the design of 2D coil geometry, each pressure sensor 
was assigned a specific frequency on the S11 spectrum, and 
the applied pressure changes the magnitude of the S11 poles 
with minimal frequency shifting. This is an important prop-
erty for multi-sensor signal processing, as the signal from 
each sensor can easily be identified. Finally, CNN-based 
machine learning was implemented to predict the pressure 
values from unforeseen S11 spectra. The accuracy of predic-
tion was relatively high with MSE of 0.12. Although we dem-
onstrated WiPPCoP with three or five sensors, the number 
of sensors can be expanded by 1) broadening the operating 
frequency via fabricating smaller or larger 2D coils, and 2) by 
reducing the difference between the resonant frequencies of 
each sensor by decreasing the bandwidth of the poles (i.e., the 
Q factor is related to the bandwidth). However, as the number 
of sensors continue to increase to a large number, challenges 
are expected to arise. For instance, with an increasing number 
of LC pressure sensors, the combined signal pattern will be 
difficult to process due to the complicated mutual induct-
ance between the stacked coils. It will require more advanced 
machine learning algorithms and a large amount of training 
data. Another issue of our system is the complexity of the 
monolithic integration of a large number of sensors since 
many layers need to be patterned and aligned vertically. Fur-
ther study and development of novel fabrication process are 
needed to address this issue.

Figure 6.  Real-time monitoring of pressure. a) Photograph image of real-time monitoring. b,c) Real-time monitoring of pressure using a flexible  
WiPPCoP placed on an index finger.
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In summary, WiPPCoP can eliminate complex off-chip 
wiring, acquire and process signal coming from multiple sen-
sors in parallel, and has the potential to consistently improve 
its accuracy during its operation and adapt to new environ-
ments through the use of machine learning.[44,45] We project 
that WiPPCoP will be an important groundwork for the rapid 
advancement of tactile sensing electronic skin for practical 
applications in the near future.

Experimental Section
Experimental Section is available in the Supporting Information.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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