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Noncontact RF Vital Sign Sensor for Continuous
Monitoring of Driver Status

Jin-Kwan Park
Chorom Jang

Abstract—TIn this paper, a radio frequency vital sign sensor based
on double voltage-controlled oscillators (VCQOs) combined with a
switchable phase-locked loop (PLL) is proposed for a noncontact
remote vital sign sensing system. Our sensing system primarily de-
tects the periodic movements of the human lungs and the hearts
via the impedance variation of the resonator. With a change in
impedance, both the VCO oscillation frequency and the PLL feed-
back voltage also change. Thus, by tracking the feedback volt-
age of the PLL, breath and heart rate signals can be acquired
simultaneously. However, as the distance between the body and
the sensor varies, there are certain points with minimal sensitiv-
ity, making it is quite difficult to detect vital signs. These points,
called impedance null points, periodically occur at distances pro-
portional to the wavelength. To overcome the impedance null point
problem, two resonators operating at different frequencies, 2.40
and 2.76 GHz, are employed as receiving components. In an ex-
periment to investigate the sensing performance as a function of
distance, the measurement distance was accurately controlled by a
linear actuator. Furthermore, to evaluate the sensing performance
in a real environment, experiments were carried out with a male
and a female subject in a static vehicle. To demonstrate the real-
time vital sign monitoring capability, spectrograms were utilized,
and the accuracy was assessed relative to reference sensors. Based
on the results, it is demonstrated that the proposed remote sensor
can reliably detect vital signs in a real vehicle environment.

Index Terms—Continuous wmonitoring, driver diagnosis,
impedance null points, noncontact detection, RF proximity vital
sign sensor, switching circuit.
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1. INTRODUCTION

N RECENT years, continuous monitoring of human physi-
I ological states and human health has received considerable
attention due to ever-increasing safety and healthcare concerns,
such as monitoring body temperature [1], intracranial pressure
[2], blood pressure [3], blood uric acid [4]-[6], blood glucose
[71, [8], blood ketone [9], [10], and stress [11]. Moreover, meth-
ods of tracking driver status to estimate drowsiness have been
developed and studied.

Continuous driver condition monitoring is particularly impor-
tant because approximately 20% of fatal car crashes are caused
by driver drowsiness [12]. Due to the high risk posed by drowsi-
ness, several techniques for recognizing driver drowsiness have
been studied, such as monitoring the movement of the vehi-
cle, changes in facial images and changes in physiological sig-
nals. Drowsiness can be estimated from vehicle movements by
considering the lane position during travel, the position of the
steering wheel, the yaw angle of the vehicle and the traveling
speed of the vehicle [13], [14]. However, this method has lim-
itations because it can identify the risk only after a potentially
dangerous situation has occurred, making it difficult to prevent
accidents. Changes in facial images can be utilized to predict
drowsiness based on the blink rate of the eyes [15], [16] and
the movement of the head [17]. However, the accuracy of a
camera-based method is affected by the angle of the camera
and various lighting conditions. Additionally, such a method
requires a high-performance system to store the images and
perform imaging processing. Estimating drowsiness based on
physiological signals is also possible by monitoring vital signs,
such as breath rate [18] and heart rate [19]. By measuring these
vital signs in real time, decisions can be made without being af-
fected by environmental conditions and before a fatal accident
occurs. Thus, various continuous vital sign monitoring methods
are under development to prevent accidents caused by drowsy
driving.

For the continuous monitoring of vital signs, the used sen-
sors should be appropriate for long-term monitoring and re-
quire a fast response time, good repeatability and robustness to
the environment. To satisfy these requirements, various sensing
mechanisms have been studied. One example is a piezoelec-
tric sensor [20], [21], which transforms the mechanical pres-
sure caused by arterial pulsations into electrical signals. How-
ever, such a sensor must be tightly fastened to the subject and
is vulnerable to frictional electricity. Therefore, piezoelectric
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sensors are not optimal for continuous monitoring. Another ap-
proach involves a photoplethysmography (PPG) sensor [22],
[23], which measures reflected or transmitted light modulated
by the periodicity of the heartbeat and respiration. However,
such a sensor must also be very closely attached to the skin,
and external light must be blocked to enable precise vital sign
measurements. Thus, such sensors are also difficult to employ
for monitoring the vital signs of a driver. The third method
is to use radio frequency (RF)-based sensors, which can be
divided into Doppler radar sensors and proximity impedance
sensors. A single-tone continuous-wave (CW) Doppler-radar-
based sensor [24]-[26] measures the changes in phase induced
by the Doppler shift. The detection range of Doppler radar is
very long, but this is a double-edged sword because it leads to
measurement difficulties when multiple subjects are in range
of the radar system. Since CW Doppler-radar-based sensors
do not transmit an instantaneous bandwidth, there is no range
resolution available to distinguish vital signs from multiple sub-
jects. As an alternative, frequency-modulated continuous-wave
(FMCW) Doppler-radar-based sensors [27], [28] show poten-
tial to solve the multiple-subject problem for vital sign monitor-
ing. FMCW Doppler-radar-based sensors transmit signals with
frequency-modulated periodic waveform changes over time. By
using the frequency difference between the transmitter and re-
ceiver, the position of the target can be localized. Moreover,
by using the phase deviation, vital signs detected from differ-
ent positions can be distinguished. However, these sensors have
high noise figures and low isolation between the transmitter and
receiver for the extraction of accurate results. Therefore, this
method suffers from problems of system complexity and cost.
For these reasons, further investigations of these sensors are
necessary to improve their convenience of use, freedom from
cointerference, and fabrication costs. On the other hand, RF
proximity impedance sensors have been developed for biomed-
ical applications due to their suitability for use in noncontact,
nondestructive and noninvasive measurements [29]—[32]. In ad-
dition, when combined with an active circuit, these sensors can
be used in commercial mobile communication systems. Note
that various vital sign sensors based on RF proximity-sensing
impedance systems have been proposed, e.g., a surface acoustic
wave (SAW) filter system [33], a phase-locked loop (PLL) sys-
tem [34], and an interferometric system [35]. However, these
sensors have short detection ranges due to their impedance null
characteristics. Specifically, periodic null points occur where
the incident and reflected waves cancel each other out. In these
regions, the impedance of the receiver drastically changes with
slight variations in the measurement position, which leads to
erroneous results.

In this paper, an RF vital sign sensor based on a switchable
circuit is proposed, and it is shown to be appropriate for the
continuous monitoring of driver status. This sensor has several
advantages. First, it has no need to be tightly fastened to the
subject, thus facilitating continuous vital sign monitoring. With
noncontact vital sign measurements, drivers are not inconve-
nienced by any restraints and do not need to equip a device
every time vital signs are to be measured. Second, the detec-
tion range of the proposed sensor has been extended to enable

its use in a vehicle environment. In our previous work, the in-
vestigated RF impedance-based sensors had a limited detection
range due to the null point problem and encountered difficulties
when applied in real-world environments. By comparison, the
detection range of the proposed sensor is increased by a factor
of eight by switching between two circuits operating at different
frequencies to avoid impedance null points. Third, excellent sen-
sor performance without an increase in the fabrication cost. By
means of resonator miniaturization and selective combination
with the active circuit, the sensor size is kept the same, and the
sensor cost is reduced through sharing of the feedback circuits.
Moreover, the performance of the proposed sensor shows no
degradation with the increase in its detection range. It is demon-
strated that a driver’s condition can be continuously monitored
by measuring his or her vital signs (hear rate and breath rate)
via this noncontact RF method.

II. SENSOR DESIGN
A. Principle

The principle of the proposed vital sign sensing transducer
is based on resonator impedance variations caused by human
respiration and heartbeat. As a subject breathes and his or her
heart beats, the volumes of the lungs and heart periodically
vary. These periodic movements cause impedance variations in
a resonator as a function of distance, giving rise to detect vital
sign signals.

The impedance of a resonator is a function of the distance
between the resonator and the subject:

7 _ m + jnotanBd
L et
no + jmtanfd

where Z,, 19, n1, 3, and d are the input impedance of the res-
onator, the intrinsic impedance of air, the intrinsic impedance
of the material, the propagation constant of the electromagnetic
waves in air, and the distance between the resonator and the
subject, respectively. Based on Eq. (1), the relation between the
impedance and the wavenumber can be derived by normalizing
the distance with respect to the operating frequency. For Z, =
R, +jX,, the resistance (R, ) and reactance (X, ) versus distance
are presented in Fig. 1(a) and Fig. 1(b), respectively. Since the
proposed sensor detects the periodic mechanical displacements
of the heart and lungs, changes in the impedance with respect to
distance are significant for sensing performance. Furthermore,
since the proposed sensor is based on voltage-controlled os-
cillators (VCOs) combined with a PLL, the reactance plays a
significant role. Therefore, the first derivative of the reactance
is derived, as shown in Fig. 2(a). To clearly identify the effect of
the distance on the first derivative of the reactance, the second
derivative of the reactance is also derived, as shown in Fig. 2(b).
Except near the null points, the second derivative of the reac-
tance exhibits a flat slope. However, near a null point, the second
derivative of the reactance fluctuates dramatically. Such a point
occurs at every half-wavelength of the device and degrades the
performance of the sensor, giving it a limited detection range.
However, since the wavelength is a function of the frequency,
devices operating at different frequencies have different null

ey
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Fig. 2. Impedance null principle versus wavenumber. (a) First derivative

impedance variation of the reactance. (b) Second derivative impedance vari-
ation of the reactance.

points, as shown in Fig. 3. Two resonators operating at
different frequencies are used: 2.76 GHz (resonator 1) and
2.4 GHz (resonator 2). The operating frequency of 2.4 GHz is
selected because it is in the industrial-scientific-medical (ISM)
band, which is a specific frequency band for wireless sensing
platforms. In addition, 2.76 GHz is selected because, as shown
in Table I, the N,y nser values of 2.4 GHz and 2.76 GHz (20 and
23, respectively) are relatively prime. Therefore, by selecting
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Fig. 3. Impedance null points of two independent resonators.
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ati 2 counter
Frequency Frequency Ratio  Value o N N3 N N No S So
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276 GH, OMHZ gy 4 2 01 0 1 1 00 0

these frequencies, regions in which the null points overlap can
be avoided, thus maximizing the detection range. Although
multiple null points occur periodically as the distance increases
to 40 cm, the null points of the two resonators do not overlap.
By exploiting this characteristic, the null point problem can be
effectively avoided without increasing the complexity of the
circuit.

B. Configuration of the System

Fig. 4(a) shows the proposed dual-mode planar-type shorting-
pin resonators. By adding multiple shorting pins to each res-
onator, the radiation gain can be increased while reducing the
resonator size [36]. The upper resonator (resonator 1) oper-
ates in the higher-frequency region (3.08 GHz), while the lower
resonator (resonator 2) operates in the lower-frequency region
(2.625 GHz), as shown in Fig. 4(b). Moreover, the loaded quality
factors (Qy,) of the resonators, which are related to their out-
put signal levels, are 36.67 and 35.47, respectively. The relation
between Q;, and the output signal level is shown as follows:

_woAg
2Qr ’

where Aw is the frequency deviation, wy is the resonant fre-
quency, and A¢ is the phase variation. As shown by Eq. (2),
a low Qg of the resonator induces large frequency deviations
in response to the phase variations caused by the mechanical
displacements of the heart and lungs. Therefore, in our pro-
posed sensor, a low Qp value is desirable to achieve a high
output signal. The difference between the measured and simu-
lated results is caused by the additional length introduced by the
components of the physical system, including the connectors
and the microstrip line. Fig. 4(c) shows the isolation character-
istics between the two resonators, demonstrating that the inter-
action between the two resonators is negligible. Thus, by adding

Aw =

(@)
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Fig. 4. Characteristics of the resonators. (a) Schematic of the proposed resonators. (b) Radiation properties of the resonators. (c) Isolation properties of the
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multiple shorting pins to the resonators, it becomes possible to
place both resonators in the same plane without any interactions.

For the selective detection of vital signs, each resonator is
associated with a VCO circuit and connected to an RF switch,
as shown in Fig. 5. The RF switch passes the signals from
VCOI and VCO?2 to the next stage of the sensor, according
to the input clock signal. The circuit diagram for each VCO
is presented in Fig. 6; a series feedback method is adopted,
and the resonator is connected to the base terminal of a bipolar
junction transistor (BJT). The VCO is designed on the basis of
the negative resistance method, as follows:

Rr +R7n < Oa

X, + X, =0, 3

where Z;, = R, + jX;, is the input impedance of the circuit
looking into the base terminal of the BJT and Z, =R, +jX, is
the input impedance of the resonator.

Because a BJT is used, R;,, can be negative. In addition, by
using a hyperabrupt junction tuning varactor diode, an inductor
(L3), and two capacitors (C; and Cs), X;, can be adjusted as
follows:

1 1 1

X {(jWOL3||jWOCv) +ngC'3} ||jw06’1'
The varactor diode has a variable capacitance (C,) that varies
with the change in the feedback voltage from 7.37 pF (0 V)
to 2.09 pF (5 V), and this characteristic causes the oscillation
frequency to be directly proportional to the feedback voltage.
Since the imaginary condition is more difficult to meet, the
reactance determines the oscillation frequency.

The measured average gains of the fabricated VCO1 and
VCO2 are 19 MHz/V and 11.2 MHz/V, respectively, and they
have respective oscillation frequency ranges of 95 MHz and
56 MHz. The bias circuit is composed of a voltage divider to
reduce the DC power supply, and the current consumption of
the BJT is 10.8 mA at a collector-emitter voltage of 4 V. The
capacitors (Cy, Cy and Cs) are used to block the DC voltage
from entering the RF signal path, and the inductors (L; and L)
are used to prevent the RF signal from being induced into the
DC bias path.

Fig. 7(a) shows the operating principle of the proposed
switchable PLL system, and the general feedback PLL system
is shown in Fig. 7(b). The operating principle of the general
feedback PLL system for vital sign measurement is as follows
[34]: When the RF signal from a VCO reaches the PLL, the
PLL compares the frequency between the incoming signal and
the lock frequency. Note that the lock frequency is determined
by multiplying the reference frequency by a frequency division
ratio. The reference frequency is injected from a stable oscil-
lator such as a crystal oscillator or signal generator, and the
frequency division ratio can be modified by the user. When the
lock frequency is lower than the incoming signal frequency,
the output voltage of the loop filter decreases to lower the oscil-
lation frequency of the VCO. By contrast, if the lock frequency
exceeds the incoming signal frequency, the output voltage of
the loop filter increases. This feedback loop causes the VCO
frequency to become equal to the lock frequency such that the

“
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system produces a stable frequency. Thus, when the volume of
the lungs or heart changes, the X, of the resonator causes the
oscillation frequency of the VCO to change. Then, the PLL ad-
justs the feedback voltage to make the output frequency equal
to the lock frequency. Consequently, as the volume of the lungs
or heart periodically varies, the feedback voltage follows the
target vital sign. However, a general feedback PLL sensor has a
limited detection range, i.e., up to the first null point.

In contrast to this general circuit, the components of the pro-
posed system are controlled by a clock signal. The operation
of the VCOs, the traversal path of the RF switch, and the lock
frequency of the PLL are all controlled by the clock signal, as
shown in Fig. 7(c). The frequency of the clock signal is 3 Hz,
and the waveform of this signal is a periodic square function
with an amplitude of 5 V. Additionally, an inverted clock signal
is applied by means of an inverter to prevent clock nonsynchro-
nization. By using a programmable PLL, the lock frequency can
be controlled by a binary bit signal, as shown in Table 1. The
frequency division ratio is programmed via the multiplication
of a prescaler value and N,yynter, and the value of Neoypter
— 1 is supplied by an external input to the PLL. By supplying
the clock signal and the inverted clock signal to Ny and Ny, the
lock frequency can be easily set to either 2.4 GHz or 2.76 GHz.
Thus, by means of this switchable system, the sensor can be op-
erated at multiple frequencies, thus extending its range without
increasing the complexity, size, or cost of the circuit.

C. Fabrication of the Sensor and Experimental Setup

The proposed sensor has been fabricated on a printed circuit
board (PCB) of 30 mil in thickness with a dielectric constant
(e,) of 2.2 and a loss tangent (tand) of 0.0009. The sensor
is composed of three layers: the resonator layer, the active
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Fig. 8. Fabricated sensor. (a) Top view of the proposed sensor (planar res-
onators). (b) Bottom view of the proposed sensor (active circuit). (c) Side view
of the proposed sensor.

circuit layer and the ground layer. Each resonator is vertically
interconnected to the active circuit through via holes, and they
share a common ground plane in the middle layer to reduce the
volume of the sensor, as shown in Fig. 8(c). Fig. 8(a) shows the
fabricated planar-type shorting-pin resonators. In overall board
size, the resonators occupy an area of 55 mm x 55 mm. The up-
per resonator has dimensions of 34.4 mm x 17.2 mm, and the
lower resonator has dimensions of 40 mm x 20 mm. Fig. 8(b)
shows the active circuit system part of the proposed sensor.
VCO1 and VCO2, which are connected to the resonators, are
each constructed using a BJT (BFP420) and a varactor diode
(SMV1245). The output of each VCO is routed to a single-pole
double-throw (SPDT) RF switch (HMC284), and the output of
the RF switch is sent to the PLL IC (HMC698LPS5). The PLL IC
has a built-in phase-frequency detector (PFD), and the output
signal of the PFD is sent to a loop filter (OP27). The reference
signal, with a frequency of 30 MHz, is generated by a crystal
oscillator (FH3000007) and injected through a coaxial micro-
jack. The feedback voltage from the loop filter is supplied to the
varactor diode of each VCO and, at the same time, is amplified
by an operational amplifier (LM2904) for data acquisition. The
clock signal is generated using a function generator (33510B)
and inverted by an inverter (74HCT04D) to switch the circuit.
Two types of experiments were conducted. First, to identify
the impedance null points and characterize the sensing ability
of the proposed sensor, an experiment was carried out as shown
in Fig. 9. The measurements were conducted using a vector
network analyzer (E6071B), and the distance (d) was adjusted
by means of a linear actuator. The resonator was fixed on the
linear actuator using a 3D-printed jig. To ensure smooth and
stable movement, a rail was installed between the linear actu-
ator and the acrylic jig. The linear actuator was connected to
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a microcontroller board, which was controlled by a computer,
allowing the distance to be controlled from 0 cm to 40 cm in 1
cm increments.

A second set of experiments was conducted to verify the
sensing response of the sensor when attached to a vehicle, as
shown in Fig. 10. The performance of the proposed sensor was
evaluated in comparison with commercial sensors. A physio-
logical pulse transducer (UFI-1010) was fastened to the second
finger of the driver to measure the heart rate, and a respiration
transducer (UFI-1132) was fastened to the chest to measure the
breath rate. The outputs of the proposed and reference sensors
were sampled by a data acquisition (DAQ) board, which was
controlled by LabView, and digital signal processing (DSP) was
performed by the computer. The raw data from the proposed sen-
sor were digitally bandpass filtered in the following two bands:
0.3-2 Hz to extract the respiration rate and 1-2 Hz to extract the
heart rate. Because the signal strength from the lungs is much
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(b)

2.65

Fig. 11. Measurement results for frequency response vs. distance. (a) Res-
onator 1. (b) Resonator 2.

higher than that from the heart, the cutoff frequency band for the
heart rate is narrower than that for the breath rate. The filtered
results were visualized using the spectrogram method, which
can show real-time beat rates via the short-time Fourier trans-
form. This was done to ensure the reliability of the results by
preventing the biased selection of results only from periods of
good performance and by allowing transitions to be observed.
Additionally, experiments were carried out with both male and
female subjects to identify the effects of sex in a static vehicle.

III. RESULTS AND DISCUSSION
A. Measuring the Variation in Impedance Versus Distance

As the distance (d) was varied from 0 cm to 40 cm, the
frequency response of the each resonator was measured every
1 cm. For clear presentation of the experimental results, the fre-
quency response of the resonators is presented for every 10 cmin
Fig. 11(a) and Fig. 11(b). As the distance changes, the resonant
frequency and radiation level of the resonator vary. Further-
more, to identify the null points, the first and second derivatives
of the reactance of each resonator were derived, as shown in
Fig. 12(a) and Fig. 12(b). The null points are clearly evident
from the corresponding measurement errors, such as motion ar-
tifacts, difficulty in fixing the person at a specific location, and
a lack of measurement points. As expected, the null points oc-
cur periodically with distance, and the intervals are similar to
their analytical values. Resonator 1 has null points every 5 cm,
starting at 6 cm, and resonator 2 has null points every 6 cm,
starting at 7 cm; the half-wavelength of resonator 1 is 6.25 cm,
and the half-wavelength of resonator 2 is 5.43 cm. Additionally,
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TABLE II
AVERAGE VITAL SIGN SIGNALS IN A VEHICLE ENVIRONMENT (UNIT: BPM)

Seatbelt Steering Wheel

Proposed Reference Corr. Proposed Reference Corr.

Male  Breath Rate ~ 25.42 25.57 0.92 22.47 2277 0.98
Subject  Heart Rate 59.00 59.09 0.90 54.80 55.69 0.92
Female Breath Rate 12.26 12.64 0.82 12.19 12.57 0.88
Subject  Heart Rate 71.54 71.88 0.92 68.69 68.77 0.88

the variations in the derivatives of the reactance decrease with
increasing distance, which can be explained in terms of the prin-
ciples of electromagnetic radiation. Since the derivative values
exhibit smaller changes, it is more difficult to detect the vital
signs as the distance increases. However, the vital signs of a fel-
low passenger will not affect the results for the driver. By virtue
of these characteristics, the proposed sensor can easily detect
the vital signs of the driver through selective operation of the
resonators via the switching circuit. Additionally, suitable re-
sults can be selected from the two resonators via postprocessing
using DSP. If the results from one resonator are not consistent
or are out of the expected ranges for the vital signs, then the
results from the other resonator will be selected.

B. Operation of the Sensor When Installed in a Vehicle

To validate the reliability of the sensor, additional experi-
ments were conducted in a static vehicle environment. First,
the proposed sensor was attached to the seatbelt of the vehicle.
Since the seatbelt is placed on the driver’s body, both the lower
and upper resonators can measure the vital signs of the hu-
man subject. Fig. 13(a)—(d) show the results measured with the
proposed and reference sensors. All results from the proposed
sensor are similar to those from the reference sensors, and the
mean values of the strongest beat rates from each sensor are
summarized in Table II. Moreover, the correlation coefficients
between the proposed and reference sensors were calculated to
validate the performance of the proposed sensor. To enhance
the readability of the calculated results, unnecessary parts of the
graphs have been removed, such as labels, ticks and scale bars.
The correlation coefficient is calculated as follows:

Em Zn (Am n

55 o) ()
(&)

where corr. is the correlation coefficient; A and B are matrices
generated from the results for the reference and proposed sen-
sors, respectively, with m and n respectively denoting the rows
and columns of each matrix; and A and B are the means of all
values in A and B, respectively.

Due to the contact with the environment, unlike in the case
of the reference sensors, undesired motion artifacts are also
measured by the proposed sensor, as seen in Fig. 13(b) and
13(d). These motion artifacts cause the correlation coefficient to
be low, as summarized in Table II. In addition, as is commonly
known, females have faster heart rates than males do, and the
observations are consistent with this fact.
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Fig. 12. Measurement results for impedance null points. (a) Resonator 1.
(b) Resonator 2.

TABLE III
COMPARISON OF VITAL SIGN SENSOR PERFORMANCE

Sensing Detection Detection Size Real-time

Component Method Range Beat Rate
Lim [37] Electrode Static Capacitance 1.5 mm 16 cm? (0]
Ueno [38] Electrode Static Capacitance 1.0 mm 20 cm? (0]
Serra [39]  Antenna Phase Contact 115.06 cm? X
Kim [33]  Resonator Impedance 20 mm 25 cm? X
Hong [34] Resonator Impedance 50 mm 30.25 cm? X
An [35] Antenna Impedance 50 mm  Not mentioned X
Chang [40] Resonator Impedance Contact  Not mentioned X
This work  Resonator Impedance ~ 400 mm  30.25 cm? (6]

Second, the proposed sensor was mounted on the steering
wheel of the vehicle. The distance between the driver’s body
and the steering wheel was approximately 37 cm, vital signs ex-
tracted from resonator 1 were used. Since the distance between
the sensor and the person was near the null point of resonator
2 and cause meaningless results. Fig. 14(a)~(d) compare the
results from the proposed sensor and the reference sensors, and
the results show excellent agreement, as summarized in Table II.
In addition, our sensor also demonstrates superior performance
compared to those reported in other works, as summarized in
Table III.

IV. CONCLUSION

In this study, a novel vital sign sensor is proposed based
on a switchable PLL-circuit-based architecture for the contin-
uous noncontact monitoring of driver status. This sensor has
been successfully demonstrated to detect vital signs when ei-
ther attached to the seatbelt or mounted on the steering wheel
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Fig. 13.  Measurement results with the sensor attached to the seatbelt of a vehicle (0 cm), visualized as spectrograms. (a) Real-time breath rate of the male
subject. (b) Real-time heart rate of the male subject. (c) Real-time breath rate of the female subject. (d) Real-time heart rate of the female subject.

Reference Proposes Reference

]

o
[
o
o
[
o

40 60 40 60 0 20 40 60 20

Time (Sec) Time (Sec) Time

o

0 20 40 60

. 0 20 40 60
- Time (Sec)

Time (Sec)

. 0 20 40 60
H Time (Sec)

0 20 40 60
Time (Sec)

Fig. 14. Measurement results with the sensor mounted on the steering wheel of a vehicle (37 cm), visualized as spectrograms. (a) Real-time breath rate of the
male subject. (b) Real-time heart rate of the male subject. (c) Real-time breath rate of the female subject. (d) Real-time heart rate of the female subject.

of a vehicle, regardless of the driver’s sex. Additionally, the good reproducibility. Furthermore, the detection range of the
proposed sensor can detect both heart rate and breath rate sensor is dramatically improved without increasing the size and
simultaneously, without requiring separate sensors. The pro- complexity of the circuit. The proposed sensor clearly could be
posed sensor exhibits rapid response, excellent sensitivity, and a excellent candidate for diagnosing driver status in real time
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in a vehicle environment. Future work will focus on reducing
motion artifacts to enhance the stability and utility of the sensor
in a moving vehicle. Moreover, the effects of temperature will
be studied through cold and heat tests.
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