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Background: Tumor-specific mutations form novel immunogenic peptides called neoantigens. Neoantigens can be used as a
biomarker predicting patient response to cancer immunotherapy. Although a predicted binding affinity (IC50) between peptide
and major histocompatibility complex class I is currently used for neoantigen prediction, large number of false-positives exist.

Materials and methods: We developed Neopepsee, a machine-learning-based neoantigen prediction program for next-
generation sequencing data. With raw RNA-seq data and a list of somatic mutations, Neopepsee automatically extracts mutated
peptide sequences and gene expression levels. We tested 14 immunogenicity features to construct a machine-learning classifier
and compared with the conventional methods based on IC50 regarding sensitivity and specificity. We tested Neopepsee on
independent datasets from melanoma, leukemia, and stomach cancer.

Results: Nine of the 14 immunogenicity features that are informative and inter-independent were used to construct the
machine-learning classifiers. Neopepsee provides a rich annotation of candidate peptides with 87 immunogenicity-related
values, including IC50, expression levels of neopeptides and immune regulatory genes (e.g. PD1, PD-L1), matched epitope
sequences, and a three-level (high, medium, and low) call for neoantigen probability. Compared with the conventional
methods, the performance was improved in sensitivity and especially two- to threefold in the specificity. Tests with validated
datasets and independently proven neoantigens confirmed the improved performance in melanoma and chronic lymphocytic
leukemia. Additionally, we found sequence similarity in proteins to known pathogenic epitopes to be a novel feature in
classification. Application of Neopepsee to 224 public stomach adenocarcinoma datasets predicted�7 neoantigens per
patient, the burden of which was correlated with patient prognosis.

Conclusions: Neopepsee can detect neoantigen candidates with less false positives and be used to determine the prognosis
of the patient. We expect that retrieval of neoantigen sequences with Neopepsee will help advance research on next-
generation cancer immunotherapies, predictive biomarkers, and personalized cancer vaccines.
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Introduction

Somatic mutations can cause tumor-specific neopeptide fragments

(so-called ‘neoantigens’), some of which induce cytotoxic T-cell

responses [1]. Importantly, neoantigen prediction can be exploited

to identify responders to immune checkpoint inhibitors [2–4].

Therefore, systematic evaluation of somatic mutations may help

advance the promising clinical outcomes of immunotherapies in

cancer treatment.

For a somatic mutation to be recognized by cytotoxic T cells, the

mutant peptide should be presented by major histocompatibility

complex class I (MHC-I) molecules [5] (Figure 1A). First, mutant

proteins are cut into short peptides by proteasomes and then
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transported into the endoplasmic reticulum by the transporter

associated with antigen processing (TAP). When mutant peptide

binds to the MHC-I peptide-binding groove, fully assembled

peptide-MHC-I complexes (pMHC-I) are presented at the surface

of the plasma membrane. The recognition of a neoantigen by a

cytotoxic T cell can activate the T-cell response.

To date, most in silico approaches for neoantigen prediction have

been focused on the MHC-I-related presentation of peptides [6, 7].

Because only 0.5% of peptides can bind to MHC-I molecules, pre-

diction of the binding affinity is the most selective step in the recog-

nition of endogenous antigens [8]. Although these tools provide

reliable measurements, practical application at the genome-level is

limited. First, the prediction of immunogenic neoantigens primarily

relies on a single arbitrary cut-off (50 or 500 nM) of a predicted

MHC-I binding affinity. Second, isoform-specific gene expression

levels of putative neoantigens and other immune signature-related

genes are mostly not estimated or considered. Third, the actual ana-

lysis requires a series of complex computational processes, which

should be handled by bioinformatics experts manually.

Here, we describe a new machine-learning-based method to

address the noted problems above and its implementation. The

program, called Neopepsee, harnesses gene- and protein-level in-

formation and a novel feature to achieve maximum accuracy: im-

proved performance was validated in a cross validation and an

independent in vivo study.

Materials and methods

Collection of potential immunogenicity features

To build a classifier that maximizes the usage of information, we initially
collected 13 potential features that have been previously reported or
hypothesized for predicting immunogenicity. The 13 potential features
were divided into three groups based on their representative biologic
meanings: (A) MHC-I binding and presentation, (B) amino-acid charac-
teristics, and (C) complex scores. For (A), seven features have been col-
lected and scored, including ‘IC50’ and ‘percentile rank’-based predictive
values for MHC-I binding affinity, NetCTLpan [9] based scores for ‘MHC-
I binding, protein cleavage, TAP transport efficiency’ and their ‘combined
score’. A score for ‘T-cell recognition’ of the pMHC-I molecule [10] was
also considered. For (B), four features have been collected including
‘hydrophobicity’ of amino acids at TCR contact residues [11, 12], ‘polarity
and charged value’ of amino acids at position 2, 3, 5, and 6 [12], ‘molecular
size’ [13], and ‘entropy of peptides’ [14]. In addition, two complex scores
for ‘differential agretopicity index (DAI)’ [15] and ‘amino acid pairwise
contact potentials (AAPPs)’ [16] were further considered. More detailed
evidences and rationales for collected features are provided in the supple-
mentary data, available at Annals of Oncology online.

In addition to the 13 feature, we defined a new score, ‘a sequence simi-
larity to known epitopes’, in light of a previous hypothesis between the
similarity and immunogenicity [17, 18]. As the fundamental objective of
the immune response is to distinguish non-self peptides from self, we
assumed that these mutations could be prioritized by developing a proper
measure. The 14 features are enlisted in the supplementary Table S1,
available at Annals of Oncology online.

Construction of control positive and negative
dataset

To construct the positive dataset (supplementary Table S2, available at
Annals of Oncology online), we initially collected 1113 epitopes and their
corresponding HLA alleles that were reported to exhibit positive T-cell

response in humans [10]. To find epitopes that can be generated by hypo-
thetical somatic mutations in human genome, we compared the
sequences of the 1113 epitopes with those of the 20 198 reviewed Swiss-
Prot human proteins [19] to only retain 311 epitopes whose sequences
are differed from the best-match by up to 2 amino acids; the best-match
protein was further used as a corresponding wild-type.

For negative dataset, we initially collected 22 245 variants from com-
mon (minor allele frequency [MAF]�0.05) non-synonymous single nu-
cleotide polymorphisms (SNPs) from dbSNP v.141 with the assumption
that widespread peptide variants would not lead to an immunogenic re-
sponse. The HLA allele for negative dataset was randomly selected from
HLA alleles of the positive set. To maintain the naturally occurring bal-
ance between positive and negative neopeptides (ratio 1–48) [20], we
randomly selected 14 633 out of the 22 245 mutant peptides to finalize
the negative dataset.

Feature selection procedure

To achieve better classification accuracy and to reduce the risk of overfit-
ting, we conducted feature selection from the 14 scores. Cleavage and
TAP of the 14 scores were initially excluded due to the lack of consistency
reported by a previous study [9]. For 12 remaining features, two major
criteria were applied for selection: (1) informativeness of the feature in
classification and (2) inter-dependency between features that causes
redundancy.

To measure informativeness, three different analyses were used:
correlation-based feature selection [21], information gain-based feature
selection [22], and classification power achieved by a single feature. The
single feature based classification power enables the prediction of the dis-
criminative power of a feature in a trained machine learning classifier,
which is represented by area under a curve (AUC) and area under a
precision-recall curve (AUPRC). The final informativeness is measured
by a merged score (supplementary Figure S1A and Table S3, available at
Annals of Oncology online). Pearson and Spearman correlation were used
to remove overlapping effects between inner individual features. If correl-
ation between two features was higher than 0.8 in both methods, one was
excluded. Finally, nine immunogenicity features: IC50, rank, combined
score, immunogenicity score, hydrophobicity, polarity&charged score,
DAI, AAPPs, and similarity were utilized to construct the machine-
learning classifiers (see details in the supplementary data and Figures S2–
S6, available at Annals of Oncology online).

Machine-learning-based classification for
immunogenicity prediction

On the basis of the selected immunogenicity features, the machine-learn-
ing-based classifiers were constructed for four learning models: Gaussian
naı̈ve Bayes (GNB), locally weighted naı̈ve Bayes (LNB), random forest
(RF), and support vector machine (SVM).

To evaluate classifiers, we used 500 iterations of 10-fold cross-
validation on the constructed dataset and measured the performance. In
the training step, calculated immunogenicity features of the dataset were
fed into four classifiers. Then we validated the performance of four
trained classifiers and conventional methods on the independent dataset.

Results

Overall workflow of Neopepsee

The overall workflow is shown in Figure 1B. RNA-seq data and a

list of somatic mutations are required for analysis. The HLA allele

can be supplied as an optional input; otherwise, it can be inferred

computationally from the RNA-seq data. For each non-

synonymous somatic mutation, affected peptides are calculated
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Figure 1. MHC-I antigen presentation pathway and corresponding Neopepsee procedure. (A) The mutant peptide (mutation sequence repre-
sented in red) from a tumor-specific antigen can be present in the plasma membrane of the major histocompatibility complex (MHC)-I molecule as
the result of a series of reactions. First, tumor-specific antigens are degraded by the proteasome (Process 1). Then, the resulting peptides are trans-
ported via transporters associated with antigen presentation (TAP) into the endoplasmic reticulum (ER) lumen. The neopeptide binds to the bind-
ing-groove of MHC-I molecules (Process 2). Peptide-MHC class I complexes (pMHC-I) are then transported via the endoplasmic reticulum (ER)-Golgi
pathway to the plasma membrane for antigen presentation to activate CD8þ T cells. MHC-I, major histocompatibility complex I; b2m, b2-microglo-
bulin; TCR, T-cell receptor. (B) Overall Neopepsee workflow. Somatic mutations and gene expressions of a given tumor tissue are assessed for neoan-
tigen prediction. In total, 9 immunogenicity features are calculated for each mutant neopeptide and fed into a classifier. Green boxes denote
unique modules in Neopepsee.
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and prepared for further analysis (see details in the supplemen-

tary data, available at Annals of Oncology online). Neopepsee clas-

sifies the potential neoantigens into three categories (high,

medium, and low) with respect to the predicted immunogenicity,

and reports the results along with 87 immunogenicity-related

values, including conventional predictions (supplementary Table

S4, available at Annals of Oncology online), expression levels of

neopeptides and immune regulatory genes (e.g. PD1 and PD-L1).

Evaluation of neoantigen prediction in Neopepsee

Two types of descriptive statistics have been used to analyze the

prediction accuracy of machine-learning classifiers (Figure 2).

First, the overall AUC of the ROC curve was improved in

Neopepsee (GNB: 0.975; LNB: 0.976; RF: 0.976; SVM: 0.981)

compared with conventional measures (IC50: 0.96; percentile

rank: 0.946) in Figure 2A. Second, AUPRC (Figure 2B) was im-

proved approximately two- to threefold (GNB: 0.41; LNB: 0.44;

RF: 0.68; and SVM: 0.61) compared with the IC50 (0.24) and per-

centile rank (0.28). Overall, the results demonstrate that machine

learning-based classifiers have higher classification power than

conventional single-value-based approaches.

The overall accuracy at the specific threshold was measured.

Conventional thresholds for immunogenicity prediction used

500 nM for IC50 and 2.49 for percentile rank, respectively [2, 18,

23]. We divided the candidate neoantigens into three classes re-

garding the output membership probability of the trained classi-

fiers: high (the most precise), medium (the most sensitive) and

low. The lowest membership probability, which qualifies sensitiv-

ity level of 0.95 to exclude outliers, is set as threshold for medium

class. The threshold for high class is the highest membership

probability at which specificity is above 0.95. All other peptides

were classified as the low class. As expected, high class had greatly

increased precision and specificity with a slight loss of sensitivity

in the test step, whereas the medium class was optimized for

increased sensitivity.

In terms of AUC and AUPRC, the RF and SVM classifiers

showed the best performance. However, the low thresholds at the

membership probability in the medium class implied the percep-

tual tendency to call a smaller number of answers to prioritize

specificity in both models. The tendency led to a drastic drop of

precision at obtaining higher recall (Figure 2B). Therefore, LNB

was finally selected as a classification model based on perform-

ance robustness.

Tests on independent experimental data

Neopepsee was tested on independent datasets from recent

studies that reported experimentally confirmed immunogenic

and non-immunogenic peptides in melanoma [23] and chronic

lymphocytic leukemia [24] patients (Figure 3). Both studies

validated the induced T-cell responses experimentally using a

MHC dextramer assay to evaluate vaccine-induced T-cell re-

sponses [23] or an IFN-c ELISPOT assay to measure spontan-

eous T-cell responses [24]. From both studies, 1093 peptides

were obtained, 65 of which were validated (12 immunogenic

and 53 non-immunogenic). The number of total calls and true/

false positives was assessed in the medium and high classes of

Neopepsee and further compared with the conventional criteria

(Figure 3A and supplementary Table S5, available at Annals of

Oncology online).

Regarding sensitivity, IC50 and the medium class called all 12

answers: note that the perfect sensitivity for IC50 is expected, be-

cause the peptides for validation were initially selected by IC50.

Classification using percentile rank and the high class missed one

and two answers, respectively. However, the high class only
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Figure 2. Performance evaluation for Neopepsee. (A) ROC curves of four predictive models (Gaussian naı̈ve Bayes, locally weighted naı̈ve
Bayes, random forest, and support vector machine) and two conventional methods (IC50 and percentile rank). All four predictive models out-
performed the conventional methods. (B) pROC curves of the same six models. All four predictive models show better performance than the
conventional methods. AUPRC is maximized in the RF model; however, an acute drop in the high recall area is observed; LNB shows the best
performance when the recall was 1. GNB, Gaussian naı̈ve Bayes; LNB, locally weighted naı̈ve Bayes; RF, random forest; SVM, support vector
machine; RANK, percentile rank.
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misclassified 14 non-immunogenic peptides out of the 53,

increasing in specificity to 0.74 (compared with 0.45 of IC50 and

0.42 of percentile rank). The balanced measure (f-score) con-

firmed the improved classification power (0.41–0.45 in conven-

tional criteria versus 0.48–0.56 in Neopepsee).

For more accurate comparison of discriminative power, the

distributions of scores were plotted for immunogenic and non-

immunogenic peptide groups (Figure 3B). The P-value of dis-

criminative power was calculated by Wilcoxon rank sum test.

The results showed a tighter clustering of immunogenic peptides,

with a better separation from non-immunogenic peptides

(P-value, 6.84e�05). While the majority of non-immunogenic

peptides are assigned with low probabilistic scores (<0.5), separ-

ation of false negatives with very high scores (�1.0) would be the

key to achieving better separation, which we expect with contin-

ued accumulation of validated data for training.

Application to The Cancer Genome Atlas stomach
adenocarcinoma (TCGA-STAD) dataset

We applied Neopepsee to a large cancer genome cohort. A total

of 224 samples were analyzed, and 3760 putative neoantigens

were identified. The median of somatic single-nucleotide variants

(SNV) was 49 and the median of putative neoantigens was 7

(Figure 4A). The number of somatic SNVs largely differed ac-

cording to microsatellite instability (MSI) status (median of 452

in MSI-high, 56 in MSI-low, and 40 in microsatellite stable

[MSS] tumors; Figure 4B). The number of neoantigens in MSI-

high tumors (median, 68) was higher than that of MSI-low (me-

dian, 10) or MSS tumors (median, 5). Interestingly, tumors with

neoantigens exhibited better prognosis compared with tumors

without neoantigens (29.1 versus 14.1 months without neoanti-

gens; log-rank P¼ 0.024; Figure 4C). However, MSI status was

not significantly associated with overall survival (29.4 versus

26.7 months with MSS; log-rank P¼ 0.616; Figure 4D). Recently,

Rooney et al. calculated immune cytolytic activity scores as

indicators of CD8þT-cell activation and showed neoantigens to

be likely to induce cytolytic activity [25]. In the cox-regression

analysis, the absence of neoantigens and advanced tumor stage

(III and IV) were identified as independent prognostic factors for

overall survival (Figure 4E). The positivity of neoantigen was

associated with improved overall survival in both univariate

(hazard ratio, 3.1; P¼ 0.022) and multivariate analysis (hazard

ratio, 2.2; P¼ 0.040). Our data suggest that increased neoantigen

loads by microsatellite instability, not MSI status itself, may be a

favorable prognostic factor. Of 3760 neoantigens, only 16

(0.42%) were found in more than one tumor sample (supple-

mentary Table S6, available at Annals of Oncology online). We

compared identified neoantigens with known immune epitopes.

In addition to known Helicobacter pylori epitopes (n¼ 7,

Supplementary Figure S7A, available at Annals of Oncology on-

line), we identified a total of 1867 known immune epitopes (sup-

plementary Table S7, available at Annals of Oncology online).

Most immune epitopes are derived from Mycobacterium tubercu-

losis (24%), Trypanosoma cruzi (19%), Vaccinia virus (6%),

Human herpes virus (4%), and, Hepatitis C virus (2%), many of

these bacteria/viruses can induce chronic inflammation, one of

critical mediators of tumor development including gastric cancer

(supplementary Figure S7B, available at Annals of Oncology

online).

Discussion

Owing to the great diversity, multi-step biochemical processes,

and the stochastic nature of T-cell immune response, accurate

prediction of neoantigen has been one of the most challenging

problems in the immunoinformatics field. As we assumed, a sin-

gle value associated with a part of the whole process can hardly

provide sufficient information to resolve the complexity. In this

context, systematic integration of multiple features into a unified

workflow is urgently needed to increase the accuracy and to
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provide a sustainable framework that exploits the growing infor-

mation. Notably, a recent study to predict MHC-I-binding pep-

tides based on mass spectrometry shed light on identifying

binding motifs and antigen processing rules [26]. We expect that

such advances will reinforce Neopepsee through a continuous re-

training of the machine learning classifier with updated datasets

and feature selection.

One of the ultimate goals of neoantigen prediction software is to

classify patients who will benefit from immunotherapy, or to de-

sign a personalized cancer vaccine. Recent studies showed that

higher mutational burden was correlated with better antitumor ac-

tivity of CTLA4 or PD-1 blockade [3, 4, 18]. Although the number

of neopeptides generated by somatic mutation seemed to be im-

portant for predicting antitumor activity of immunotherapy, the

criteria to identify neopeptides and the correlation were inconsist-

ent across studies [3, 18]. Future studies identifying optimized se-

lection criteria for neopeptides and further correlative analysis are

warranted. Since most neoantigenic peptides are not identical be-

tween tumors [4], cancer vaccines targeting neopeptides may not

be a ‘universal’ solution that provides broad coverage to cancer pa-

tients. Nevertheless, Neopepsee will enable the efficient analysis of

a personal somatic mutation profile and identification of potential

neopeptides for personalized vaccination.

In summary, Neopepsee can be applied not only to identify pu-

tative neoantigens, but also to compare neoantigens with known

immune epitopes. The analysis results can be used for subsequent

prognostic/predictive biomarker discovery or to design antigens

for cancer vaccines.
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Figure 4. Application of Neopepsee to stomach adenocarcinoma (TCGA-STAD) dataset. (A) The number of putative neoantigens and som-
atic point mutations in TCGA-STAD tumors (N¼224). (B) The number of somatic point mutations according to microsatellite instability (MSI)
status in TCGA-STAD tumors (N¼224). (C) Kaplan–Meier estimates of overall survival according to the positivity of neoantigens. (D) Kaplan–
Meier estimates of overall survival according to the MSI status. (E) Univariate and multivariate Cox regression survival analyses.
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Availability

The program is available at http://sourceforge.net/projects/neo

pepsee/.
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