Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Functional link hybrid artificial neural network for predicting continuous biohydrogen production in dynamic membrane bioreactor

Full metadata record
DC Field Value Language
dc.contributor.authorPandey Ashutosh Kumar-
dc.contributor.authorNayak, Sarat Chandra-
dc.contributor.authorKim, Sang-Hyoun-
dc.date.accessioned2024-08-12T06:30:18Z-
dc.date.available2024-08-12T06:30:18Z-
dc.date.issued2024-04-
dc.identifier.issn0960-8524-
dc.identifier.issn1873-2976-
dc.identifier.urihttps://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/23010-
dc.description.abstractConventional machine learning approaches have shown limited predictive power when applied to continuous biohydrogen production due to nonlinearity and instability. This study was aimed at forecasting the dynamic membrane reactor performance in terms of the hydrogen production rate (HPR) and hydrogen yield (HY) using laboratory -based daily operation datapoints for twelve input variables. Hybrid algorithms were developed by integrating particle swarm optimized with functional link artificial neural network (PSO-FLN) which outperformed other hybrid algorithms for both HPR and HY, with determination coefficients (R2) of 0.97 and 0.80 and mean absolute percentage errors of 0.014 % and 0.023 %, respectively. Shapley additive explanations (SHAP) explained the two positive -influencing parameters, OLR_added (1.1-1.3 mol/L/d) and butyric acid (7.5-16.5 g COD/L) supports the highest HPR (40-60 L/L/d). This research indicates that PSO-FLN model are capable of handling complicated datasets with high precision in less computational time at 9.8 sec for HPR and 10.0 sec for HY prediction.-
dc.publisherELSEVIER SCI LTD-
dc.titleFunctional link hybrid artificial neural network for predicting continuous biohydrogen production in dynamic membrane bioreactor-
dc.typeArticle-
dc.publisher.location영국-
dc.identifier.doi10.1016/j.biortech.2024.130496-
dc.identifier.wosid001209335400001-
dc.identifier.bibliographicCitationBIORESOURCE TECHNOLOGY, v.397-
dc.citation.titleBIORESOURCE TECHNOLOGY-
dc.citation.volume397-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > 공과대학 사회환경시스템공학부 > 공과대학 건설환경공학과 > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Pandey, Ashutosh Kumar photo

Pandey, Ashutosh Kumar
공과대학 건설환경공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE