Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Baek, S. | - |
dc.contributor.author | Lee, I. | - |
dc.date.accessioned | 2024-09-30T03:00:13Z | - |
dc.date.available | 2024-09-30T03:00:13Z | - |
dc.date.issued | 2020-06 | - |
dc.identifier.issn | 2001-0370 | - |
dc.identifier.issn | 2001-0370 | - |
dc.identifier.uri | https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/23038 | - |
dc.description.abstract | Most genetic variations associated with human complex traits are located in non-coding genomic regions. Therefore, understanding the genotype-to-phenotype axis requires a comprehensive catalog of functional non-coding genomic elements, most of which are involved in epigenetic regulation of gene expression. Genome-wide maps of open chromatin regions can facilitate functional analysis of cis- and trans-regulatory elements via their connections with trait-associated sequence variants. Currently, Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) is considered the most accessible and cost-effective strategy for genome-wide profiling of chromatin accessibility. Single-cell ATAC-seq (scATAC-seq) technology has also been developed to study cell type-specific chromatin accessibility in tissue samples containing a heterogeneous cellular population. However, due to the intrinsic nature of scATAC-seq data, which are highly noisy and sparse, accurate extraction of biological signals and devising effective biological hypothesis are difficult. To overcome such limitations in scATAC-seq data analysis, new methods and software tools have been developed over the past few years. Nevertheless, there is no consensus for the best practice of scATAC-seq data analysis yet. In this review, we discuss scATAC-seq technology and data analysis methods, ranging from preprocessing to downstream analysis, along with an up-to-date list of published studies that involved the application of this method. We expect this review will provide a guideline for successful data generation and analysis methods using appropriate software tools and databases for the study of chromatin accessibility at single-cell resolution. © 2020 The Author(s) | - |
dc.format.extent | 11 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier B.V. | - |
dc.title | Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation | - |
dc.type | Article | - |
dc.publisher.location | 네델란드 | - |
dc.identifier.doi | 10.1016/j.csbj.2020.06.012 | - |
dc.identifier.scopusid | 2-s2.0-85086828794 | - |
dc.identifier.wosid | 000607350300017 | - |
dc.identifier.bibliographicCitation | Computational and Structural Biotechnology Journal, v.18, pp 1429 - 1439 | - |
dc.citation.title | Computational and Structural Biotechnology Journal | - |
dc.citation.volume | 18 | - |
dc.citation.startPage | 1429 | - |
dc.citation.endPage | 1439 | - |
dc.type.docType | Review | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Computer software | - |
dc.subject.keywordPlus | Cost effectiveness | - |
dc.subject.keywordPlus | Data handling | - |
dc.subject.keywordPlus | Gene expression | - |
dc.subject.keywordPlus | Information analysis | - |
dc.subject.keywordPlus | Biological hypothesis | - |
dc.subject.keywordPlus | Cost effective strategies | - |
dc.subject.keywordPlus | Data analysis methods | - |
dc.subject.keywordPlus | Epigenetic regulation | - |
dc.subject.keywordPlus | Genome-wide profiling | - |
dc.subject.keywordPlus | High-throughput sequencing | - |
dc.subject.keywordPlus | Hypothesis generation | - |
dc.subject.keywordPlus | Single cell resolution | - |
dc.subject.keywordPlus | Cytology | - |
dc.subject.keywordPlus | DNA fragment | - |
dc.subject.keywordPlus | transcription factor | - |
dc.subject.keywordPlus | transcriptome | - |
dc.subject.keywordPlus | transposase | - |
dc.subject.keywordPlus | assay for transposase accessible chromatin | - |
dc.subject.keywordPlus | cell maturation | - |
dc.subject.keywordPlus | cells by body anatomy | - |
dc.subject.keywordPlus | chromatin | - |
dc.subject.keywordPlus | data integration | - |
dc.subject.keywordPlus | data processing | - |
dc.subject.keywordPlus | dimensionality reduction | - |
dc.subject.keywordPlus | disease association | - |
dc.subject.keywordPlus | enhancer region | - |
dc.subject.keywordPlus | gene expression | - |
dc.subject.keywordPlus | genetic association | - |
dc.subject.keywordPlus | genetic variability | - |
dc.subject.keywordPlus | genetic variation | - |
dc.subject.keywordPlus | genome analysis | - |
dc.subject.keywordPlus | genome-wide association study | - |
dc.subject.keywordPlus | high throughput sequencing | - |
dc.subject.keywordPlus | human | - |
dc.subject.keywordPlus | practice guideline | - |
dc.subject.keywordPlus | priority journal | - |
dc.subject.keywordPlus | promoter region | - |
dc.subject.keywordPlus | quality control | - |
dc.subject.keywordPlus | Review | - |
dc.subject.keywordPlus | RNA processing | - |
dc.subject.keywordPlus | single cell RNA seq | - |
dc.subject.keywordAuthor | ATAC sequencing | - |
dc.subject.keywordAuthor | Chromatin accessibility | - |
dc.subject.keywordAuthor | Single-cell ATAC sequencing | - |
dc.subject.keywordAuthor | Single-cell biology | - |
dc.subject.keywordAuthor | Single-cell RNA sequencing | - |
Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.
Yonsei University 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea1599-1885
© 2021 YONSEI UNIV. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.