Detailed Information

Cited 5 time in webofscience Cited 0 time in scopus
Metadata Downloads

Vibration-Generation Mechanism and Reduction Method in Linear Iron-Cored Permanent-Magnet Synchronous Motors at Stationary State

Full metadata record
DC FieldValueLanguage
dc.contributor.authorEun Kyu Kim-
dc.contributor.authorWontaek Song-
dc.contributor.authorYoon Sik Kwon-
dc.contributor.authorJae Hyun Kim-
dc.contributor.authorHyeong Min Yoon-
dc.contributor.authorHyo Geon Lee-
dc.contributor.authorJun Young Yoon-
dc.date.accessioned2023-04-10T01:40:09Z-
dc.date.available2023-04-10T01:40:09Z-
dc.date.issued2022-01-
dc.identifier.issn1083-4435-
dc.identifier.urihttps://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6340-
dc.description.abstractThis article presents the theoretical studies and experimental validation of the vibration-generation mechanism and reduction method in linear iron-cored permanent-magnet (PM) motors at stationary state. While motor noise and vibration during moving operations have been extensively studied, such vibration issue at stationary state has been relatively less explored even though it can be critically problematic for high-precision applications where strict standstill of a motor is demanded. We identify a discrete position feedback in a servo control loop as a major culprit of the stationary-state motor vibration, and investigate the vibration-generation mechanism analytically and experimentally. Closed-loop dynamics related to such undesired vibration is analyzed by modeling a position-controlled linear iron-cored PM motor with a discrete encoder feedback. The analyzed model suggests that the dominant vibration frequency is determined by the control parameters regardless of the encoder quantization, while the corresponding vibration amplitude increases solely by the encoder quantization step size. Giving a standstill command to the linear motor stage testbed position controlled with different quantization step sizes, we have confirmed that the analyzed model consists of the experimental results as well as the simulated results. Understanding the vibration-generation mechanism of linear iron-cored PM motors, we also present a reduction method of such stationary-state motor vibration by a programmable-resolution incremental encoder. Using our method, we can reduce the motor vibration significantly while overcoming the speed limit of general quadrature encoders, providing a practical solution to various industrial applications that require both high-throughput and high-precision performance.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleVibration-Generation Mechanism and Reduction Method in Linear Iron-Cored Permanent-Magnet Synchronous Motors at Stationary State-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TMECH.2021.3139959-
dc.identifier.scopusid2-s2.0-85123384544-
dc.identifier.wosid000742680200001-
dc.identifier.bibliographicCitationIEEE-ASME TRANSACTIONS ON MECHATRONICS, v.27, no.5, pp 3397 - 3406-
dc.citation.titleIEEE-ASME TRANSACTIONS ON MECHATRONICS-
dc.citation.volume27-
dc.citation.number5-
dc.citation.startPage3397-
dc.citation.endPage3406-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorMotor vibration-
dc.subject.keywordAuthorStationary-state vibration-
dc.subject.keywordAuthorVibration-generation mechanism-
dc.subject.keywordAuthorRegenerative control current-
dc.subject.keywordAuthorEncoder quantization-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Mechanical Engineering > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Eun Kyu photo

Kim, Eun Kyu
공과대학 기계공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE