Carbon nanotube-supported graphene oxide nanoribbon bilayer membrane for high-performance diafiltration
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi Y. | - |
dc.contributor.author | Kang J. | - |
dc.contributor.author | Choi E. | - |
dc.contributor.author | Kim J.Y. | - |
dc.contributor.author | Kim J.P. | - |
dc.contributor.author | Kim J.H. | - |
dc.contributor.author | Kwon O. | - |
dc.contributor.author | DAEWOO KIM | - |
dc.date.accessioned | 2023-04-10T07:40:04Z | - |
dc.date.available | 2023-04-10T07:40:04Z | - |
dc.date.issued | 2022-01 | - |
dc.identifier.issn | 1385-8947 | - |
dc.identifier.issn | 1873-3212 | - |
dc.identifier.uri | https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6403 | - |
dc.description.abstract | We demonstrate the significantly enhanced molecular separation performance of stacked graphene oxide nanoribbon (GONR) membranes with a carbon nanotube (CNT) supporting layer. Functionalized CNTs (FCNTs) are prepared for the bilayer membrane by partially oxidizing CNTs with KMnO4, which can be dispersed in various solvents and water up to 40 mg/mL without the addition of a surfactant. The concentrated FCNT dispersion is viscous and can be coated on porous polymeric support using a scalable bar-coating method. When a selective GONR layer is vacuum filtrated onto the FCNT-coated support, the membrane can filter organic dye molecules with a 100% rejection rate, while allowing fast penetration of small ions and water, resulting in an excellent diafiltration performance with a separation factor of 950 and water flux of 138 LMH. Due to the strong adhesion of FCNTs and GONRs on polymeric support, the membrane can be operated at high pressures (up to 30 bar) and under continuous cross-flow conditions. | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | ELSEVIER SCIENCE SA | - |
dc.title | Carbon nanotube-supported graphene oxide nanoribbon bilayer membrane for high-performance diafiltration | - |
dc.type | Article | - |
dc.publisher.location | 스위스 | - |
dc.identifier.doi | 10.1016/j.cej.2021.131805 | - |
dc.identifier.scopusid | 2-s2.0-85113636210 | - |
dc.identifier.wosid | 000724304900006 | - |
dc.identifier.bibliographicCitation | CHEMICAL ENGINEERING JOURNAL, v.427, pp 131805-1 - 131805-8 | - |
dc.citation.title | CHEMICAL ENGINEERING JOURNAL | - |
dc.citation.volume | 427 | - |
dc.citation.startPage | 131805-1 | - |
dc.citation.endPage | 131805-8 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.subject.keywordPlus | POLYAMIDE NANOFILTRATION MEMBRANE | - |
dc.subject.keywordPlus | DEAD-END | - |
dc.subject.keywordPlus | NF MEMBRANE | - |
dc.subject.keywordPlus | HIGH-FLUX | - |
dc.subject.keywordPlus | DYE | - |
dc.subject.keywordPlus | ULTRAFILTRATION | - |
dc.subject.keywordPlus | MECHANISMS | - |
dc.subject.keywordPlus | FILTRATION | - |
dc.subject.keywordPlus | LAYER | - |
dc.subject.keywordPlus | PURIFICATION | - |
dc.subject.keywordAuthor | carbon nanotube | - |
dc.subject.keywordAuthor | hydrogel | - |
dc.subject.keywordAuthor | large area coating | - |
dc.subject.keywordAuthor | stability | - |
dc.subject.keywordAuthor | diafiltration | - |
Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.
Yonsei University 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea1599-1885
© 2021 YONSEI UNIV. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.