Detailed Information

Cited 17 time in webofscience Cited 0 time in scopus
Metadata Downloads

Dynamic Pore Modulation of Stretchable Electrospun Nanofiber Filter for Adaptive Machine Learned Respiratory Protection

Full metadata record
DC Field Value Language
dc.contributor.authorShin J.-
dc.contributor.authorJeong S.-
dc.contributor.authorKim J.-
dc.contributor.authorChoi Y.Y.-
dc.contributor.authorChoi J.-
dc.contributor.authorLee J.G.-
dc.contributor.authorKim, Seongyoon-
dc.contributor.authorKim M.-
dc.contributor.authorRho Y.-
dc.contributor.authorHong S.-
dc.contributor.authorJUNG-IL CHOI-
dc.contributor.authorGrigoropoulos C.P.-
dc.contributor.authorKo S.H.-
dc.date.accessioned2023-04-11T01:40:05Z-
dc.date.available2023-04-11T01:40:05Z-
dc.date.issued2021-10-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6420-
dc.description.abstractThe recent emergence of highly contagious respiratory disease and the underlying issues of worldwide air pollution jointly heighten the importance of the personal respirator. However, the incongruence between the dynamic environment and nonadaptive respirators imposes physiological and psychological adverse effects, which hinder the public dissemination of respirators. To address this issue, we introduce adaptive respiratory protection based on a dynamic air filter (DAF) driven by machine learning (ML) algorithms. The stretchable elastomer fiber membrane of the DAF affords immediate adjustment of filtration characteristics through active rescaling of the micropores by simple pneumatic control, enabling seamless and constructive transition of filtration characteristics. The resultant DAF-respirator (DAF-R), made possible by ML algorithms, successfully demonstrates real-time predictive adapting maneuvers, enabling personalizable and continuously optimized respiratory protection under changing circumstances.-
dc.format.extent11-
dc.language영어-
dc.language.isoENG-
dc.publisherAMER CHEMICAL SOC-
dc.titleDynamic Pore Modulation of Stretchable Electrospun Nanofiber Filter for Adaptive Machine Learned Respiratory Protection-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1021/acsnano.1c06204-
dc.identifier.scopusid2-s2.0-85117281985-
dc.identifier.wosid000711790600022-
dc.identifier.bibliographicCitationACS NANO, v.15, no.10, pp 15730 - 15740-
dc.citation.titleACS NANO-
dc.citation.volume15-
dc.citation.number10-
dc.citation.startPage15730-
dc.citation.endPage15740-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordAuthorAlgorithms-
dc.subject.keywordAuthorFibers-
dc.subject.keywordAuthorAtmospheric chemistry-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > 이과대학 자연과학부 > 이과대학 수학 > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seongyoon photo

Kim, Seongyoon
이과대학 수학과+계산과학공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE