Dynamic Pore Modulation of Stretchable Electrospun Nanofiber Filter for Adaptive Machine Learned Respiratory Protection
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Shin J. | - |
dc.contributor.author | Jeong S. | - |
dc.contributor.author | Kim J. | - |
dc.contributor.author | Choi Y.Y. | - |
dc.contributor.author | Choi J. | - |
dc.contributor.author | Lee J.G. | - |
dc.contributor.author | Kim, Seongyoon | - |
dc.contributor.author | Kim M. | - |
dc.contributor.author | Rho Y. | - |
dc.contributor.author | Hong S. | - |
dc.contributor.author | JUNG-IL CHOI | - |
dc.contributor.author | Grigoropoulos C.P. | - |
dc.contributor.author | Ko S.H. | - |
dc.date.accessioned | 2023-04-11T01:40:05Z | - |
dc.date.available | 2023-04-11T01:40:05Z | - |
dc.date.issued | 2021-10 | - |
dc.identifier.issn | 1936-0851 | - |
dc.identifier.uri | https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6420 | - |
dc.description.abstract | The recent emergence of highly contagious respiratory disease and the underlying issues of worldwide air pollution jointly heighten the importance of the personal respirator. However, the incongruence between the dynamic environment and nonadaptive respirators imposes physiological and psychological adverse effects, which hinder the public dissemination of respirators. To address this issue, we introduce adaptive respiratory protection based on a dynamic air filter (DAF) driven by machine learning (ML) algorithms. The stretchable elastomer fiber membrane of the DAF affords immediate adjustment of filtration characteristics through active rescaling of the micropores by simple pneumatic control, enabling seamless and constructive transition of filtration characteristics. The resultant DAF-respirator (DAF-R), made possible by ML algorithms, successfully demonstrates real-time predictive adapting maneuvers, enabling personalizable and continuously optimized respiratory protection under changing circumstances. | - |
dc.format.extent | 11 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Dynamic Pore Modulation of Stretchable Electrospun Nanofiber Filter for Adaptive Machine Learned Respiratory Protection | - |
dc.type | Article | - |
dc.publisher.location | 미국 | - |
dc.identifier.doi | 10.1021/acsnano.1c06204 | - |
dc.identifier.scopusid | 2-s2.0-85117281985 | - |
dc.identifier.wosid | 000711790600022 | - |
dc.identifier.bibliographicCitation | ACS NANO, v.15, no.10, pp 15730 - 15740 | - |
dc.citation.title | ACS NANO | - |
dc.citation.volume | 15 | - |
dc.citation.number | 10 | - |
dc.citation.startPage | 15730 | - |
dc.citation.endPage | 15740 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordAuthor | Algorithms | - |
dc.subject.keywordAuthor | Fibers | - |
dc.subject.keywordAuthor | Atmospheric chemistry | - |
Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.
Yonsei University 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea1599-1885
© 2021 YONSEI UNIV. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.