Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method

Full metadata record
DC Field Value Language
dc.contributor.authorJun Y.-
dc.contributor.authorShin H.-
dc.contributor.authorEo T.-
dc.contributor.authorKim T.-
dc.contributor.authorDo Sik Hwang-
dc.date.accessioned2023-04-13T00:40:05Z-
dc.date.available2023-04-13T00:40:05Z-
dc.date.issued2021-05-
dc.identifier.issn1361-8415-
dc.identifier.urihttps://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6477-
dc.description.abstractQuantitative tissue characteristics, which provide valuable diagnostic information, can be represented by magnetic resonance (MR) parameter maps using magnetic resonance imaging (MRI); however, a long scan time is necessary to acquire them, which prevents the application of quantitative MR parameter mapping to real clinical protocols. For fast MR parameter mapping, we propose a deep model-based MR parameter mapping network called DOPAMINE that combines a deep learning network with a model-based method to reconstruct MR parameter maps from undersampled multi-channel k-space data. DOPAMINE consists of two networks: 1) an MR parameter mapping network that uses a deep convolutional neural network (CNN) that estimates initial parameter maps from undersampled k-space data (CNN-based mapping), and 2) a reconstruction network that removes aliasing artifacts in the parameter maps with a deep CNN (CNN-based reconstruction) and an interleaved data consistency layer by an embedded MR model-based optimization procedure. We demonstrated the performance of DOPAMINE in brain T1 map reconstruction with a variable flip angle (VFA) model. To evaluate the performance of DOPAMINE, we compared it with conventional parallel imaging, low-rank based reconstruction, model-based reconstruction, and state-of-the-art deep-learning-based mapping methods for three different reduction factors (R = 3, 5, and 7) and two different sampling patterns (1D Cartesian and 2D Poisson-disk). Quantitative metrics indicated that DOPAMINE outperformed other methods in reconstructing T1 maps for all sampling patterns and reduction factors. DOPAMINE exhibited quantitatively and qualitatively superior performance to that of conventional methods in reconstructing MR parameter maps from undersampled multi-channel k-space data. The proposed method can thus reduce the scan time of quantitative MR parameter mapping that uses a VFA model. © 2021 Elsevier B.V.-
dc.language영어-
dc.language.isoENG-
dc.publisherELSEVIER SCIENCE BV-
dc.titleDeep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.media.2021.102017-
dc.identifier.scopusid2-s2.0-85102256663-
dc.identifier.bibliographicCitationMEDICAL IMAGE ANALYSIS, v.70, pp 102017-1 - 102017-14-
dc.citation.titleMEDICAL IMAGE ANALYSIS-
dc.citation.volume70-
dc.citation.startPage102017-1-
dc.citation.endPage102017-14-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusAmines-
dc.subject.keywordPlusConvolutional neural networks-
dc.subject.keywordPlusDeep learning-
dc.subject.keywordPlusDeep neural networks-
dc.subject.keywordPlusMagnetic resonance imaging-
dc.subject.keywordPlusMagnetism-
dc.subject.keywordPlusMapping-
dc.subject.keywordPlusMultilayer neural networks-
dc.subject.keywordPlusNeurophysiology-
dc.subject.keywordPlusResonance-
dc.subject.keywordPlusConventional methods-
dc.subject.keywordPlusMap reconstruction-
dc.subject.keywordPlusModel based optimization-
dc.subject.keywordPlusModel based reconstruction-
dc.subject.keywordPlusQuantitative metrics-
dc.subject.keywordPlusReconstruction networks-
dc.subject.keywordPlusResonance parameters-
dc.subject.keywordPlusTissue characteristics-
dc.subject.keywordPlusLearning systems-
dc.subject.keywordPlusarticle-
dc.subject.keywordPlusbrain-
dc.subject.keywordPluscontrolled study-
dc.subject.keywordPlusdeep learning-
dc.subject.keywordPlusnuclear magnetic resonance imaging-
dc.subject.keywordPlusquantitative analysis-
dc.subject.keywordAuthormagnetic resonance image-
dc.subject.keywordAuthordeep learning-
dc.subject.keywordAuthorartificial intelligence-
dc.subject.keywordAuthorparameter mapping-
dc.subject.keywordAuthorreconstruction-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > 공과대학 전기전자공학부 > 공과대학 전기전자공학과 > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher SHIN, HYUNGSEOB photo

SHIN, HYUNGSEOB
공과대학 전기전자공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE