Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jun Y. | - |
dc.contributor.author | Shin H. | - |
dc.contributor.author | Eo T. | - |
dc.contributor.author | Kim T. | - |
dc.contributor.author | Do Sik Hwang | - |
dc.date.accessioned | 2023-04-13T00:40:05Z | - |
dc.date.available | 2023-04-13T00:40:05Z | - |
dc.date.issued | 2021-05 | - |
dc.identifier.issn | 1361-8415 | - |
dc.identifier.uri | https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6477 | - |
dc.description.abstract | Quantitative tissue characteristics, which provide valuable diagnostic information, can be represented by magnetic resonance (MR) parameter maps using magnetic resonance imaging (MRI); however, a long scan time is necessary to acquire them, which prevents the application of quantitative MR parameter mapping to real clinical protocols. For fast MR parameter mapping, we propose a deep model-based MR parameter mapping network called DOPAMINE that combines a deep learning network with a model-based method to reconstruct MR parameter maps from undersampled multi-channel k-space data. DOPAMINE consists of two networks: 1) an MR parameter mapping network that uses a deep convolutional neural network (CNN) that estimates initial parameter maps from undersampled k-space data (CNN-based mapping), and 2) a reconstruction network that removes aliasing artifacts in the parameter maps with a deep CNN (CNN-based reconstruction) and an interleaved data consistency layer by an embedded MR model-based optimization procedure. We demonstrated the performance of DOPAMINE in brain T1 map reconstruction with a variable flip angle (VFA) model. To evaluate the performance of DOPAMINE, we compared it with conventional parallel imaging, low-rank based reconstruction, model-based reconstruction, and state-of-the-art deep-learning-based mapping methods for three different reduction factors (R = 3, 5, and 7) and two different sampling patterns (1D Cartesian and 2D Poisson-disk). Quantitative metrics indicated that DOPAMINE outperformed other methods in reconstructing T1 maps for all sampling patterns and reduction factors. DOPAMINE exhibited quantitatively and qualitatively superior performance to that of conventional methods in reconstructing MR parameter maps from undersampled multi-channel k-space data. The proposed method can thus reduce the scan time of quantitative MR parameter mapping that uses a VFA model. © 2021 Elsevier B.V. | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | ELSEVIER SCIENCE BV | - |
dc.title | Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method | - |
dc.type | Article | - |
dc.publisher.location | 네델란드 | - |
dc.identifier.doi | 10.1016/j.media.2021.102017 | - |
dc.identifier.scopusid | 2-s2.0-85102256663 | - |
dc.identifier.bibliographicCitation | MEDICAL IMAGE ANALYSIS, v.70, pp 102017-1 - 102017-14 | - |
dc.citation.title | MEDICAL IMAGE ANALYSIS | - |
dc.citation.volume | 70 | - |
dc.citation.startPage | 102017-1 | - |
dc.citation.endPage | 102017-14 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Amines | - |
dc.subject.keywordPlus | Convolutional neural networks | - |
dc.subject.keywordPlus | Deep learning | - |
dc.subject.keywordPlus | Deep neural networks | - |
dc.subject.keywordPlus | Magnetic resonance imaging | - |
dc.subject.keywordPlus | Magnetism | - |
dc.subject.keywordPlus | Mapping | - |
dc.subject.keywordPlus | Multilayer neural networks | - |
dc.subject.keywordPlus | Neurophysiology | - |
dc.subject.keywordPlus | Resonance | - |
dc.subject.keywordPlus | Conventional methods | - |
dc.subject.keywordPlus | Map reconstruction | - |
dc.subject.keywordPlus | Model based optimization | - |
dc.subject.keywordPlus | Model based reconstruction | - |
dc.subject.keywordPlus | Quantitative metrics | - |
dc.subject.keywordPlus | Reconstruction networks | - |
dc.subject.keywordPlus | Resonance parameters | - |
dc.subject.keywordPlus | Tissue characteristics | - |
dc.subject.keywordPlus | Learning systems | - |
dc.subject.keywordPlus | article | - |
dc.subject.keywordPlus | brain | - |
dc.subject.keywordPlus | controlled study | - |
dc.subject.keywordPlus | deep learning | - |
dc.subject.keywordPlus | nuclear magnetic resonance imaging | - |
dc.subject.keywordPlus | quantitative analysis | - |
dc.subject.keywordAuthor | magnetic resonance image | - |
dc.subject.keywordAuthor | deep learning | - |
dc.subject.keywordAuthor | artificial intelligence | - |
dc.subject.keywordAuthor | parameter mapping | - |
dc.subject.keywordAuthor | reconstruction | - |
Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.
Yonsei University 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea1599-1885
© 2021 YONSEI UNIV. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.