Detailed Information

Cited 3 time in webofscience Cited 0 time in scopus
Metadata Downloads

Feedforward Error Learning Deep Neural Networks for Multivariate Deterministic Power Forecasting

Full metadata record
DC Field Value Language
dc.contributor.authorKo, Min-Seung-
dc.contributor.authorLee, Kwangsuk-
dc.contributor.authorHur, Kyeon-
dc.date.accessioned2023-04-21T01:40:06Z-
dc.date.available2023-04-21T01:40:06Z-
dc.date.issued2022-09-
dc.identifier.issn1551-3203-
dc.identifier.issn1941-0050-
dc.identifier.urihttps://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6561-
dc.description.abstractThis article proposes a deep neural network (DNN) framework for multivariate deterministic power forecasting in the context of the high penetration of variable and uncertain renewable energy sources. The deep learning model is organized based on the 1-D convolutional neural network to lessen the computational burden, typical of recurrent neural network based models, and combines WaveNet and EfficientNet to improve the forecasting accuracy. Motivated by the inefficiency that all the models conduct the same tasks in the popular ensemble approach, we also designed a feedforward error learning DNN, which computes the error of the basic model separately. We further incorporated embedded and filter methods for feature selection to enhance the model visibility and the utility of the framework. Comprehensive studies on the public load and PV datasets demonstrate that the proposed framework outperforms the conventional methods in applicability, computational efficiency, and forecasting accuracy.-
dc.format.extent10-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleFeedforward Error Learning Deep Neural Networks for Multivariate Deterministic Power Forecasting-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TII.2022.3160628-
dc.identifier.wosid000811603400050-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, v.18, no.9, pp 6214 - 6223-
dc.citation.titleIEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS-
dc.citation.volume18-
dc.citation.number9-
dc.citation.startPage6214-
dc.citation.endPage6223-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaAutomation & Control Systems-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryAutomation & Control Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Industrial-
dc.subject.keywordPlusFEATURE-SELECTION-
dc.subject.keywordPlusWIND-
dc.subject.keywordAuthorPredictive models-
dc.subject.keywordAuthorForecasting-
dc.subject.keywordAuthorComputational modeling-
dc.subject.keywordAuthorData models-
dc.subject.keywordAuthorTask analysis-
dc.subject.keywordAuthorConvolutional neural networks-
dc.subject.keywordAuthorLoad modeling-
dc.subject.keywordAuthorCompound scaling-
dc.subject.keywordAuthorconvolutional neural networks (CNN)-
dc.subject.keywordAuthordeterministic power forecasting-
dc.subject.keywordAuthorerror learning-
dc.subject.keywordAuthorfeature selection-
dc.subject.keywordAuthormultivariate forecasting-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > 공과대학 전기전자공학부 > 공과대학 전기전자공학과 > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Ko, Min-seung photo

Ko, Min-seung
공과대학 전기전자공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE