Detailed Information

Cited 3 time in webofscience Cited 0 time in scopus
Metadata Downloads

SRAM Write Assist Circuit Using Cell Supply Voltage Self-Collapse With Bitline Charge Sharing for Near-Threshold Operation

Full metadata record
DC FieldValueLanguage
dc.contributor.authorCho, Keonhee-
dc.contributor.authorPark, Juhyun-
dc.contributor.authorKim, Kiryong-
dc.contributor.authorOh, Tae Woo-
dc.contributor.authorJung, Seong-Ook-
dc.date.accessioned2023-04-21T01:40:09Z-
dc.date.available2023-04-21T01:40:09Z-
dc.date.issued2022-03-
dc.identifier.issn1549-7747-
dc.identifier.issn1558-3791-
dc.identifier.urihttps://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6573-
dc.description.abstractThis brief presents SRAM write assist circuit using cell supply voltage self-collapse with bitline charge sharing (SC-BCS) that can lower the minimum operating voltage to the near-threshold voltage (V-th) region while consuming a minimal write energy. The proposed SC-BCS improves the write-ability by utilizing the cell supply voltage (CVDD) self-collapse and the feedback operation through the detection of write failure. Because the amount of CVDD collapse is regulated automatically depending on the write-ability of the selected cell, the write energy of the proposed SC-BCS is effectively reduced. The proposed SC-BCS can achieve a 5 sigma write-ability yield with a smaller delay overhead than gate-modulated self-collapse and self-collapse write assists in the near-V-th region. In addition, the proposed SC-BCS consumes the lowest write energy with minimal delay overhead or without any delay overhead compared with the strong-bias transient CVDD collapse and pulsed-pMOS transient CVDD collapse. The measurement result of the test chip fabricated using 65-nm CMOS technology indicates that the proposed SC-BCS can operate without any failure up to 0.36 V consuming write power 12.6 mu W/MHz.-
dc.format.extent5-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleSRAM Write Assist Circuit Using Cell Supply Voltage Self-Collapse With Bitline Charge Sharing for Near-Threshold Operation-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TCSII.2021.3103916-
dc.identifier.wosid000770045800184-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, v.69, no.3, pp 1567 - 1571-
dc.citation.titleIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS-
dc.citation.volume69-
dc.citation.number3-
dc.citation.startPage1567-
dc.citation.endPage1571-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.subject.keywordPlusMB SRAM-
dc.subject.keywordAuthorTransistors-
dc.subject.keywordAuthorSRAM cells-
dc.subject.keywordAuthorLogic gates-
dc.subject.keywordAuthorTransient analysis-
dc.subject.keywordAuthorDelays-
dc.subject.keywordAuthorCircuits and systems-
dc.subject.keywordAuthorCircuit stability-
dc.subject.keywordAuthorEnergy efficiency-
dc.subject.keywordAuthornear-threshold operation-
dc.subject.keywordAuthorstatic random access memory (SRAM)-
dc.subject.keywordAuthorSRAM write assist circuit-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Electrical and Electronic Engineering > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Cho, Keonhee photo

Cho, Keonhee
공과대학 전기전자공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE