Multiple parameter identification using genetic algorithm in vanadium redox flow batteries
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi Y.Y. | - |
dc.contributor.author | Kim, Seongyoon | - |
dc.contributor.author | Kim S. | - |
dc.contributor.author | Choi J.-I. | - |
dc.date.accessioned | 2023-04-21T01:40:17Z | - |
dc.date.available | 2023-04-21T01:40:17Z | - |
dc.date.issued | 2020-02 | - |
dc.identifier.issn | 0378-7753 | - |
dc.identifier.issn | 1873-2755 | - |
dc.identifier.uri | https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6610 | - |
dc.description.abstract | We propose a multiple parameter identification method for vanadium redox flow batteries (VRFBs) to estimate the model parameter in a VRFB model. The proposed method consists of an evaluation of identifiability based on the Fisher Information Matrix (FIM) to determine the best subset of model parameters to be identified, a numerical modeling of semi-two-dimensional steady-state VRFB model, and a genetic algorithm to estimate optimal model parameters. In the optimization, we introduce a fitness function involving the mean square errors of the voltage between available experimental data and results of the VRFB model. We validate the proposed method by calculating confidence intervals of identifying parameters in the subset based on the FIM from the state of charge-voltage data obtained from a small VRFB cell experiment; we compare the curves of the identified-parameter model with those obtained experimentally. Further, we demonstrate the robustness of the proposed method through its application to a kW-scale VRFB stack utilizing advanced mixed electrolytes. The capacity-voltage curves predicted by the identified-parameter model show good agreement with those obtained experimentally under various operating conditions, with mean relative errors of less than 1.9%. © 2020 Elsevier B.V. | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Elsevier B.V. | - |
dc.title | Multiple parameter identification using genetic algorithm in vanadium redox flow batteries | - |
dc.type | Article | - |
dc.publisher.location | 네델란드 | - |
dc.identifier.doi | 10.1016/j.jpowsour.2019.227684 | - |
dc.identifier.scopusid | 2-s2.0-85077679745 | - |
dc.identifier.wosid | 000517663800058 | - |
dc.identifier.bibliographicCitation | Journal of Power Sources, v.450 | - |
dc.citation.title | Journal of Power Sources | - |
dc.citation.volume | 450 | - |
dc.type.docType | Article | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.subject.keywordPlus | Battery management systems | - |
dc.subject.keywordPlus | Charging (batteries) | - |
dc.subject.keywordPlus | Fisher information matrix | - |
dc.subject.keywordPlus | Flow batteries | - |
dc.subject.keywordPlus | Genetic algorithms | - |
dc.subject.keywordPlus | Identification (control systems) | - |
dc.subject.keywordPlus | Matrix algebra | - |
dc.subject.keywordPlus | Mean square error | - |
dc.subject.keywordPlus | Numerical methods | - |
dc.subject.keywordPlus | Vanadium | - |
dc.subject.keywordPlus | Confidence interval | - |
dc.subject.keywordPlus | Electrochemical modeling | - |
dc.subject.keywordPlus | Fitness functions | - |
dc.subject.keywordPlus | Identified parameter | - |
dc.subject.keywordPlus | Mean relative error | - |
dc.subject.keywordPlus | Multiple parameters | - |
dc.subject.keywordPlus | Operating condition | - |
dc.subject.keywordPlus | Vanadium redox flow batteries | - |
dc.subject.keywordPlus | Parameter estimation | - |
dc.subject.keywordAuthor | Electrochemical model | - |
dc.subject.keywordAuthor | Fisher information matrix | - |
dc.subject.keywordAuthor | Genetic algorithm | - |
dc.subject.keywordAuthor | Parameter identification | - |
dc.subject.keywordAuthor | Redox flow battery | - |
Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.
Yonsei University 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea1599-1885
© 2021 YONSEI UNIV. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.