Detailed Information

Cited 31 time in webofscience Cited 44 time in scopus
Metadata Downloads

Multiple parameter identification using genetic algorithm in vanadium redox flow batteries

Full metadata record
DC Field Value Language
dc.contributor.authorChoi Y.Y.-
dc.contributor.authorKim, Seongyoon-
dc.contributor.authorKim S.-
dc.contributor.authorChoi J.-I.-
dc.date.accessioned2023-04-21T01:40:17Z-
dc.date.available2023-04-21T01:40:17Z-
dc.date.issued2020-02-
dc.identifier.issn0378-7753-
dc.identifier.issn1873-2755-
dc.identifier.urihttps://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6610-
dc.description.abstractWe propose a multiple parameter identification method for vanadium redox flow batteries (VRFBs) to estimate the model parameter in a VRFB model. The proposed method consists of an evaluation of identifiability based on the Fisher Information Matrix (FIM) to determine the best subset of model parameters to be identified, a numerical modeling of semi-two-dimensional steady-state VRFB model, and a genetic algorithm to estimate optimal model parameters. In the optimization, we introduce a fitness function involving the mean square errors of the voltage between available experimental data and results of the VRFB model. We validate the proposed method by calculating confidence intervals of identifying parameters in the subset based on the FIM from the state of charge-voltage data obtained from a small VRFB cell experiment; we compare the curves of the identified-parameter model with those obtained experimentally. Further, we demonstrate the robustness of the proposed method through its application to a kW-scale VRFB stack utilizing advanced mixed electrolytes. The capacity-voltage curves predicted by the identified-parameter model show good agreement with those obtained experimentally under various operating conditions, with mean relative errors of less than 1.9%. © 2020 Elsevier B.V.-
dc.language영어-
dc.language.isoENG-
dc.publisherElsevier B.V.-
dc.titleMultiple parameter identification using genetic algorithm in vanadium redox flow batteries-
dc.typeArticle-
dc.publisher.location네델란드-
dc.identifier.doi10.1016/j.jpowsour.2019.227684-
dc.identifier.scopusid2-s2.0-85077679745-
dc.identifier.wosid000517663800058-
dc.identifier.bibliographicCitationJournal of Power Sources, v.450-
dc.citation.titleJournal of Power Sources-
dc.citation.volume450-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.subject.keywordPlusBattery management systems-
dc.subject.keywordPlusCharging (batteries)-
dc.subject.keywordPlusFisher information matrix-
dc.subject.keywordPlusFlow batteries-
dc.subject.keywordPlusGenetic algorithms-
dc.subject.keywordPlusIdentification (control systems)-
dc.subject.keywordPlusMatrix algebra-
dc.subject.keywordPlusMean square error-
dc.subject.keywordPlusNumerical methods-
dc.subject.keywordPlusVanadium-
dc.subject.keywordPlusConfidence interval-
dc.subject.keywordPlusElectrochemical modeling-
dc.subject.keywordPlusFitness functions-
dc.subject.keywordPlusIdentified parameter-
dc.subject.keywordPlusMean relative error-
dc.subject.keywordPlusMultiple parameters-
dc.subject.keywordPlusOperating condition-
dc.subject.keywordPlusVanadium redox flow batteries-
dc.subject.keywordPlusParameter estimation-
dc.subject.keywordAuthorElectrochemical model-
dc.subject.keywordAuthorFisher information matrix-
dc.subject.keywordAuthorGenetic algorithm-
dc.subject.keywordAuthorParameter identification-
dc.subject.keywordAuthorRedox flow battery-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Science > 이과대학 자연과학부 > 이과대학 수학 > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kim, Seongyoon photo

Kim, Seongyoon
이과대학 수학과+계산과학공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE