Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Robust Lane Detection via Expanded Self Attention

Full metadata record
DC Field Value Language
dc.contributor.author이민혁-
dc.contributor.author이준협-
dc.contributor.author이도균-
dc.contributor.author김우진-
dc.contributor.author황상원-
dc.contributor.author이상윤-
dc.date.accessioned2023-05-08T01:40:05Z-
dc.date.available2023-05-08T01:40:05Z-
dc.date.issued2022-01-04-
dc.identifier.urihttps://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6659-
dc.description.abstractThe image-based lane detection algorithm is one of the key technologies in autonomous vehicles. Modern deep learning methods achieve high performance in lane detection, but it is still difficult to accurately detect lanes in challenging situations such as congested roads and extreme lighting conditions. To be robust on these challenging situations, it is important to extract global contextual information even from limited visual cues. In this paper, we propose a simple but powerful self-attention mechanism optimized for lane detection called the Expanded Self Attention (ESA) module. Inspired by the simple geometric structure of lanes, the proposed method predicts the confidence of a lane along the vertical and horizontal directions in an image. The prediction of the confidence enables estimating occluded locations by extracting global contextual information. ESA module can be easily implemented and applied to any encoder-decoder-based model without increasing the inference time. The performance of our method is evaluated on three popular lane detection benchmarks (TuSimple, CULane and BDD100K). We achieve state-of-the-art performance in CULane and BDD100K and distinct improvement on TuSimple dataset. The experimental results show that our approach is robust to occlusion and extreme lighting conditions.-
dc.language영어-
dc.language.isoENG-
dc.titleRobust Lane Detection via Expanded Self Attention-
dc.typeConference-
dc.identifier.doi10.1109/WACV51458.2022.00201-
dc.citation.titleProceedings - 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022-
dc.citation.startPage1949-
dc.citation.endPage1958-
dc.citation.conferenceNameIEEE/CVF Winter Conference on Applications of Computer Vision (WACV)-
dc.citation.conferencePlace미국-
dc.citation.conferencePlace미국, 하와이-
dc.citation.conferenceDate2022-01-04 ~ 2022-01-08-
dc.identifier.urlhttp://arxiv.org/abs/2207.06953-
Files in This Item
Go to Link
Appears in
Collections
College of Engineering > 공과대학 전기전자공학부 > 공과대학 전기전자공학과 > 3. Conference Papers

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Minhyeok, Lee photo

Minhyeok, Lee
공과대학 전기전자공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE