Deep-learning-based reduced-order modeling to optimize recuperative burner operating conditions
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yang, Mingyu | - |
dc.contributor.author | Kim, Seongyoon | - |
dc.contributor.author | Sun, Xiang | - |
dc.contributor.author | Kim, Sanghyun | - |
dc.contributor.author | Choi, Jiyong | - |
dc.contributor.author | Park, Tae Seon | - |
dc.contributor.author | Choi, Jung-Il | - |
dc.date.accessioned | 2023-10-17T02:40:05Z | - |
dc.date.available | 2023-10-17T02:40:05Z | - |
dc.date.issued | 2024-01 | - |
dc.identifier.issn | 1359-4311 | - |
dc.identifier.uri | https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6723 | - |
dc.publisher | Pergamon Press Ltd. | - |
dc.title | Deep-learning-based reduced-order modeling to optimize recuperative burner operating conditions | - |
dc.type | Article | - |
dc.publisher.location | 영국 | - |
dc.identifier.doi | 10.1016/j.applthermaleng.2023.121669 | - |
dc.identifier.scopusid | 2-s2.0-85173155772 | - |
dc.identifier.bibliographicCitation | Applied Thermal Engineering, v.236 | - |
dc.citation.title | Applied Thermal Engineering | - |
dc.citation.volume | 236 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.
Yonsei University 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea1599-1885
© 2021 YONSEI UNIV. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.