Mussel-Inspired Copolyether Loop with Superior Antifouling Behavior
- Authors
- Shin, Eeseul; Lim, Chanoong; Kang, Uk Jung; Kim, Minseong; Park, Jinwoo; Kim, Dongseok; 최우진; Hong, Jinkee; Baig, Chunggi; Lee, Dong Woog; Kim, Byeong-Su
- Issue Date
- May-2020
- Publisher
- AMER CHEMICAL SOC
- Citation
- MACROMOLECULES, v.53, no.9, pp 3551 - 3562
- Pages
- 12
- Journal Title
- MACROMOLECULES
- Volume
- 53
- Number
- 9
- Start Page
- 3551
- End Page
- 3562
- URI
- https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/22954
- DOI
- 10.1021/acs.macromol.0c00481
- ISSN
- 0024-9297
1520-5835
- Abstract
- Poly(ethylene glycol) (PEG) has attracted significant interest because of its superior antifouling properties, water solubility, and biocompatibility. However, the translation of its antifouling properties onto target surfaces has been challenging because of its limited functionality. Herein, the superior antifouling properties of PEG-based block copolyethers functionalized with catechol, a mussel-inspired, versatile moiety for coating surfaces, were evaluated within a framework of polyethers exclusively. A series of catechol-functionalized polyethers with diverse molecular weights and catechol contents were synthesized via anionic ring-opening polymerization in a controlled manner. The versatile adsorption and antifouling effects of block copolyethers were evaluated using a quartz crystal microbalance with dissipation. Furthermore, the crucial role of the topology (loop vs brush) in the antifouling properties was analyzed via a surface force apparatus and direct atomistic molecular dynamics simulations. This study demonstrates that the catechol-functionalized triblock copolymer shows excellent antifouling properties, exhibiting its great potential in various biomedical applications.
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - College of Engineering > 공과대학 화공생명공학부 > 공과대학 화공생명공학과 > 1. Journal Articles

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.