Hamilton Transversals in Tournaments
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chakraborti Debsoumya | - |
dc.contributor.author | Kim Jaehoon | - |
dc.contributor.author | Lee Hyunwoo | - |
dc.contributor.author | 서재현 | - |
dc.date.accessioned | 2025-01-20T00:30:12Z | - |
dc.date.available | 2025-01-20T00:30:12Z | - |
dc.date.issued | 2024-12 | - |
dc.identifier.issn | 0209-9683 | - |
dc.identifier.issn | 1439-6912 | - |
dc.identifier.uri | https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/23155 | - |
dc.description.abstract | It is well-known that every tournament contains a Hamilton path, and every strongly connected tournament contains a Hamilton cycle. This paper establishes transversal generalizations of these classical results. For a collection T=(T1,& ctdot;,Tm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}=(T_1,\dots ,T_m)$$\end{document} of not-necessarily distinct tournaments on a common vertex set V, an m-edge directed graph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document} with vertices in V is called a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}$$\end{document}-transversal if there exists a bijection phi:E(D)->[m]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi :E(\mathcal {D})\rightarrow [m]$$\end{document} such that e is an element of E(T phi(e))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E(T_{\phi (e)})$$\end{document} for all e is an element of E(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E(\mathcal {D})$$\end{document}. We prove that for sufficiently large m with m=|V|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=|V|-1$$\end{document}, there exists a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}$$\end{document}-transversal Hamilton path.,Moreover, if m=|V|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=|V|$$\end{document} and at least m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m-1$$\end{document} of the tournaments T1,& mldr;,Tm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1,\ldots ,T_m$$\end{document} are assumed to be strongly connected, then there is a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}$$\end{document}-transversal Hamilton cycle. In our proof, we utilize a novel way of partitioning tournaments which we dub H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document}-partition., | - |
dc.format.extent | 20 | - |
dc.language | 영어 | - |
dc.language.iso | ENG | - |
dc.publisher | Springer Verlag | - |
dc.title | Hamilton Transversals in Tournaments | - |
dc.type | Article | - |
dc.publisher.location | 독일 | - |
dc.identifier.doi | 10.1007/s00493-024-00123-1 | - |
dc.identifier.wosid | 001291216200001 | - |
dc.identifier.bibliographicCitation | Combinatorica, v.44, no.6, pp 1381 - 1400 | - |
dc.citation.title | Combinatorica | - |
dc.citation.volume | 44 | - |
dc.citation.number | 6 | - |
dc.citation.startPage | 1381 | - |
dc.citation.endPage | 1400 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.
Yonsei University 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea1599-1885
© 2021 YONSEI UNIV. ALL RIGHTS RESERVED.
Certain data included herein are derived from the © Web of Science of Clarivate Analytics. All rights reserved.
You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.