Hamilton Transversals in Tournaments
- Authors
- Chakraborti Debsoumya; Kim Jaehoon; Lee Hyunwoo; 서재현
- Issue Date
- Dec-2024
- Publisher
- Springer Verlag
- Citation
- Combinatorica, v.44, no.6, pp 1381 - 1400
- Pages
- 20
- Journal Title
- Combinatorica
- Volume
- 44
- Number
- 6
- Start Page
- 1381
- End Page
- 1400
- URI
- https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/23155
- DOI
- 10.1007/s00493-024-00123-1
- ISSN
- 0209-9683
1439-6912
- Abstract
- It is well-known that every tournament contains a Hamilton path, and every strongly connected tournament contains a Hamilton cycle. This paper establishes transversal generalizations of these classical results. For a collection T=(T1,& ctdot;,Tm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}=(T_1,\dots ,T_m)$$\end{document} of not-necessarily distinct tournaments on a common vertex set V, an m-edge directed graph D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {D}$$\end{document} with vertices in V is called a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}$$\end{document}-transversal if there exists a bijection phi:E(D)->[m]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi :E(\mathcal {D})\rightarrow [m]$$\end{document} such that e is an element of E(T phi(e))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E(T_{\phi (e)})$$\end{document} for all e is an element of E(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\in E(\mathcal {D})$$\end{document}. We prove that for sufficiently large m with m=|V|-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=|V|-1$$\end{document}, there exists a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}$$\end{document}-transversal Hamilton path.,Moreover, if m=|V|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m=|V|$$\end{document} and at least m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m-1$$\end{document} of the tournaments T1,& mldr;,Tm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_1,\ldots ,T_m$$\end{document} are assumed to be strongly connected, then there is a T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{T}$$\end{document}-transversal Hamilton cycle. In our proof, we utilize a novel way of partitioning tournaments which we dub H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document}-partition.,
- Files in This Item
- There are no files associated with this item.
- Appears in
Collections - The Graduate School > 대학원 수학계산학부(계산과학공학) > 1. Journal Articles

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.