Detailed Information

Cited 0 time in webofscience Cited 0 time in scopus
Metadata Downloads

Silver Nanoclusters Serve as Fluorescent Rivets Linking Hoogsteen Triplex DNA and Hairpin-Loop DNA Structures

Authors
Nagda, RiddhiPARK, SOOYEONJung, Il LaeNam, KeonwookCHANDANA, YADAVALLI HARIKim, Young MinYANG, KYUNGJIKKang, JooyounThulstrup, Peter WaabenBjerrum, Morten JannikCho, MinhaengKim, Tae-HwanRoh, Young HoonSHAH, PRATIKYang, Seong Wook
Issue Date
Aug-2022
Citation
, v.16, no.8, pp.13211 - 13222
Volume
16
Number
8
Start Page
13211
End Page
13222
URI
https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6319
DOI
10.1021/acsnano.2c06631
Abstract
Greater understanding of the mutual influence between DNA and the associated nanomaterial on the properties of each other can provide alternative strategies for designing and developing DNA nanomachines. DNA secondary structures are essential for encapsulating highly emissive silver nanoclusters (DNA/AgNCs). Likewise, AgNCs stabilize secondary DNA structures, such as hairpin DNA, duplex DNA, and parallel-motif DNA triplex. In this study, we found that the fluorescence of AgNCs encapsulated within a Hoogsteen triplex DNA structure can be turned on and off in response to pH changes. We also show that AgNCs can act as nanoscale rivets, linking two functionally distinctive DNA nanostructures. For instance, we found that a Hoogsteen triplex DNA structure with a seven-cytosine loop encapsulates red fluorescent AgNCs. The red fluorescence faded under alkaline conditions, whereas the fluorescence was restored in a near-neutral environment. Hairpin DNA and random DNA structures did not exhibit this pH-dependent AgNCs fluorescence. A fluorescence lifetime measurement and a small-angle X-ray scattering analysis showed that the triplex DNA-encapsulated AgNCs were photophysically convertible between bright and dark states. An in-gel electrophoresis analysis indicated that bright and dark convertibility depended on the AgNCs-riveted dimerization of the triplex DNAs. Moreover, we found that AgNCs rivet the triplex DNA and hairpin DNA to form a heterodimer, emitting orange fluorescence. Our findings suggest that AgNCs between two cytosine-rich loops can be used as nanorivets in designing noncanonical DNA origami beyond Watson?Crick base pairing.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Life Science and Biotechnology > Biotechnology > 1. Journal Articles
일반대학원 > 일반대학원 생명과학부 > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Kyungjik, Yang photo

Kyungjik, Yang
College of Life Science and Biotechnology (Biotechnology)
Read more

Altmetrics

Total Views & Downloads

BROWSE