Detailed Information

Cited 38 time in webofscience Cited 0 time in scopus
Metadata Downloads

Neuromorphic Active Pixel Image Sensor Array for Visual Memory

Authors
Seongin HongHaewon ChoBYUNGHA KANGKYUNGHO PARKDeji AkinwandeHYUN JAE KIMSunkook Kim
Issue Date
Sep-2021
Publisher
AMER CHEMICAL SOC
Keywords
neuromorphic engineering; visual memory; amorphous oxide semiconductor; phototransistor; active pixel sensor
Citation
ACS NANO, v.15, no.9, pp 15,362 - 15,370
Journal Title
ACS NANO
Volume
15
Number
9
Start Page
15,362
End Page
15,370
URI
https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6346
DOI
10.1021/acsnano.1c06758
ISSN
1936-0851
Abstract
Neuromorphic engineering, a methodology for emulating synaptic functions or neural systems, has attracted tremendous attention for achieving next-generation artificial intelligence technologies in the field of electronics and photonics. However, to emulate human visual memory, an active pixel sensor array for neuromorphic photonics has yet to be demonstrated, even though it can implement an artificial neuron array in hardware because individual pixels can act as artificial neurons. Here, we present a neuromorphic active pixel image sensor array (NAPISA) chip based on an amorphous oxide semiconductor heterostructure, emulating the human visual memory. In the 8 × 8 NAPISA chip, each pixel with a select transistor and a neuromorphic phototransistor is based on a solution-processed indium zinc oxide back channel layer and sputtered indium gallium zinc oxide front channel layer. These materials are used as a triggering layer for persistent photoconductivity and a high-performance channel layer with outstanding uniformity. The phototransistors in the pixels exhibit both photonic potentiation and depression characteristics by a constant negative and positive gate bias due to charge trapping/detrapping. The visual memory and forgetting behaviors of the NAPISA can be successfully demonstrated by using the pulsed light stencil method without any software or simulation. This study provides valuable information to other neuromorphic devices and systems for next-generation artificial intelligence technologies.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Electrical and Electronic Engineering > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher Park, Kyungho photo

Park, Kyungho
공과대학 전기전자공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE