Detailed Information

Cited 64 time in webofscience Cited 0 time in scopus
Metadata Downloads

Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction

Full metadata record
DC Field Value Language
dc.contributor.authorMuckley, Matthew J.-
dc.contributor.authorRiemenschneider, Bruno-
dc.contributor.authorRadmanesh, Alireza-
dc.contributor.authorKim, Sunwoo-
dc.contributor.authorJeong, Geunu-
dc.contributor.authorKo, Jingyu-
dc.contributor.authorJun, Yohan-
dc.contributor.authorShin, Hyungseob-
dc.contributor.authorHwang, Dosik-
dc.contributor.authorMostapha, Mahmoud-
dc.contributor.authorArberet, Simon-
dc.contributor.authorNickel, Dominik-
dc.contributor.authorRamzi, Zaccharie-
dc.contributor.authorCiuciu, Philippe-
dc.contributor.authorStarck, Jean-Luc-
dc.contributor.authorTeuwen, Jonas-
dc.contributor.authorKarkalousos, Dimitrios-
dc.contributor.authorZhang, Chaoping-
dc.contributor.authorSriram, Anuroop-
dc.contributor.authorHuang, Zhengnan-
dc.contributor.authorYakubova, Nafissa-
dc.contributor.authorLui, Yvonne W.-
dc.contributor.authorKnoll, Florian-
dc.date.accessioned2023-04-21T01:40:11Z-
dc.date.available2023-04-21T01:40:11Z-
dc.date.issued2021-09-
dc.identifier.issn0278-0062-
dc.identifier.issn1558-254X-
dc.identifier.urihttps://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6583-
dc.description.abstractAccelerating MRI scans is one of the principal outstanding problems in the MRI research community. Towards this goal, we hosted the second fastMRI competition targeted towards reconstructing MR images with subsampled k-space data. We provided participants with data from 7,299 clinical brain scans (de-identified via a HIPAA-compliant procedure by NYU Langone Health), holding back the fully-sampled data from 894 of these scans for challenge evaluation purposes. In contrast to the 2019 challenge, we focused our radiologist evaluations on pathological assessment in brain images. We also debuted a new Transfer track that required participants to submit models evaluated on MRI scanners from outside the training set. We received 19 submissions from eight different groups. Results showed one team scoring best in both SSIM scores and qualitative radiologist evaluations. We also performed analysis on alternative metrics to mitigate the effects of background noise and collected feedback from the participants to inform future challenges. Lastly, we identify common failure modes across the submissions, highlighting areas of need for future research in the MRI reconstruction community.-
dc.format.extent12-
dc.language영어-
dc.language.isoENG-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleResults of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction-
dc.typeArticle-
dc.publisher.location미국-
dc.identifier.doi10.1109/TMI.2021.3075856-
dc.identifier.wosid000692208500011-
dc.identifier.bibliographicCitationIEEE TRANSACTIONS ON MEDICAL IMAGING, v.40, no.9, pp 2306 - 2317-
dc.citation.titleIEEE TRANSACTIONS ON MEDICAL IMAGING-
dc.citation.volume40-
dc.citation.number9-
dc.citation.startPage2306-
dc.citation.endPage2317-
dc.type.docTypeArticle-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.subject.keywordPlusDEEP-
dc.subject.keywordPlusRESONANCE-
dc.subject.keywordPlusNETWORKS-
dc.subject.keywordPlusSENSE-
dc.subject.keywordAuthorMagnetic resonance imaging-
dc.subject.keywordAuthorImage reconstruction-
dc.subject.keywordAuthorAcceleration-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorData models-
dc.subject.keywordAuthorTraining-
dc.subject.keywordAuthorPathology-
dc.subject.keywordAuthorChallenge-
dc.subject.keywordAuthorpublic data set-
dc.subject.keywordAuthorMR image reconstruction-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorparallel imaging-
dc.subject.keywordAuthorcompressed sensing-
dc.subject.keywordAuthorfast imaging-
dc.subject.keywordAuthoroptimization-
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > 공과대학 전기전자공학부 > 공과대학 전기전자공학과 > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher SHIN, HYUNGSEOB photo

SHIN, HYUNGSEOB
공과대학 전기전자공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE