Detailed Information

Cited 17 time in webofscience Cited 18 time in scopus
Metadata Downloads

Parallel imaging in time-of-flight magnetic resonance angiography using deep multistream convolutional neural networks

Authors
Jun, YohanEo, TaejoonShin, HyungseobKim, TaeseongLee, Ho-JoonHwang, Dosik
Issue Date
Jun-2019
Publisher
John Wiley & Sons Inc.
Keywords
deep-learning; magnetic resonance angiography; multistream network; parallel imaging; time-of-flight
Citation
Magnetic Resonance in Medicine, v.81, no.6, pp 3840 - 3853
Pages
14
Journal Title
Magnetic Resonance in Medicine
Volume
81
Number
6
Start Page
3840
End Page
3853
URI
https://yscholarhub.yonsei.ac.kr/handle/2021.sw.yonsei/6627
DOI
10.1002/mrm.27656
ISSN
0740-3194
1522-2594
Abstract
Purpose: To develop and evaluate a method of parallel imaging time-of-flight (TOF) MRA using deep multistream convolutional neural networks (CNNs). Methods: A deep parallel imaging network ("DPI-net") was developed to reconstruct 3D multichannel MRA from undersampled data. It comprises 2 deep-learning networks: a network of multistream CNNs for extracting feature maps of multichannel images and a network of reconstruction CNNs for reconstructing images from the multistream network output feature maps. The images were evaluated using normalized root mean square error (NRMSE), peak signal-to-noise ratio (PSNR), and structural similarity (SSIM) values, and the visibility of blood vessels was assessed by measuring the vessel sharpness of middle and posterior cerebral arteries on axial maximum intensity projection (MIP) images. Vessel sharpness was compared using paired t tests, between DPI-net, 2 conventional parallel imaging methods (SAKE and ESPIRiT), and a deep-learning method (U-net). Results: DPI-net showed superior performance in reconstructing vessel signals in both axial slices and MIP images for all reduction factors. This was supported by the quantitative metrics, with DPI-net showing the lowest NRMSE, the highest PSNR and SSIM (except R = 3.8 on sagittal MIP images, and R = 5.7 on axial slices and sagittal MIP images), and significantly higher vessel sharpness values than the other methods. Conclusion: DPI-net was effective in reconstructing 3D TOF MRA from highly undersampled multichannel MR data, achieving superior performance, both quantitatively and qualitatively, over conventional parallel imaging and other deep-learning methods.
Files in This Item
There are no files associated with this item.
Appears in
Collections
College of Engineering > Electrical and Electronic Engineering > 1. Journal Articles

qrcode

Items in Scholar Hub are protected by copyright, with all rights reserved, unless otherwise indicated.

Related Researcher

Researcher SHIN, HYUNGSEOB photo

SHIN, HYUNGSEOB
공과대학 전기전자공학과
Read more

Altmetrics

Total Views & Downloads

BROWSE